CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 645-653.DOI: 10.11949/0438-1157.20240709
• Catalysis, kinetics and reactors • Previous Articles
Zilin PENG(), Lei ZHOU, Qinghang DENG, Guanghua YE(
), Xinggui ZHOU
Received:
2024-06-25
Revised:
2024-10-25
Online:
2025-03-10
Published:
2025-03-25
Contact:
Guanghua YE
通讯作者:
叶光华
作者简介:
彭子林(1999—),女,硕士研究生,y30220221@mail.ecust.edu.cn
基金资助:
CLC Number:
Zilin PENG, Lei ZHOU, Qinghang DENG, Guanghua YE, Xinggui ZHOU. Kinetics of 3D NAND flash wet etching with phosphoric acid under the influence of H2SiO3[J]. CIESC Journal, 2025, 76(2): 645-653.
彭子林, 周蕾, 邓庆航, 叶光华, 周兴贵. 包含偏硅酸影响的3D NAND磷酸湿法刻蚀动力学[J]. 化工学报, 2025, 76(2): 645-653.
Fig.1 Apparatus of etching experiments with phosphoric acid as etchanta—magnetic stirring oil bath; b—quartz three-mouth flask; c—condenser; d—wafer clamp; e—thermoelectric couple; f—wafer; g—stirrer
1 | Luo Y X, Ghose S, Cai Y, et al. Improving 3D NAND flash memory lifetime by tolerating early retention loss and process variation[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2018, 2(3): 1-48. |
2 | Goda A. 3-D NAND technology achievements and future scaling perspectives[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1373-1381. |
3 | Takeuchi K. Novel co-design of NAND flash memory and NAND flash controller circuits for sub-30 nm low-power high-speed solid-state drives (SSD)[J]. IEEE Journal of Solid-State Circuits, 2009, 44(4): 1227-1234. |
4 | Shibata N, Maejima H, Isobe K, et al. A 70 nm 16 Gb 16-level-cell NAND flash memory[J]. IEEE Journal of Solid-State Circuits, 2008, 43(4): 929-937. |
5 | Reiter T, Klemenschits X, Filipovic L. Impact of plasma induced damage on the fabrication of 3D NAND flash memory[J]. Solid-State Electronics, 2022, 192: 108261. |
6 | Zhou Z H, Wu Y W, Han S L, et al. Unveiling polycrystalline silicon channel dissolution mechanism in wet etching process of 3D NAND fabrication[J]. Surfaces and Interfaces, 2024, 50: 104515. |
7 | Goda A. Recent progress on 3D NAND flash technologies[J]. Electronics, 2021, 10(24): 3156. |
8 | Han C, Wu Z P, Yang C, et al. Influence of accumulated charges on deep trench etch process in 3D NAND memory[J]. Semiconductor Science and Technology, 2020, 35(4): 045003. |
9 | Gale G W. Industry context for semiconductor wet etch and surface preparation[J]. Solid State Phenomena, 2018, 282: 3-9. |
10 | Kim M K, Kim I J, Lee J S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory[J]. Science Advances, 2021, 7(3): eabe1341. |
11 | Liao Y M, Tai H, Liu W T, et al. Novel poly gate shaping by wet etch process in 2xnm NAND flash device and beyond[J]. ECS Transactions, 2014, 61: 63-65. |
12 | Luo L Y, Lu Z Y, Zou X Q, et al. An effective process to remove etch damage prior to selective epitaxial growth in 3D NAND flash memory[J]. Semiconductor Science Technology, 2019, 34(9): 095004. |
13 | Park T, Kim T, Son C, et al. Kinetic effect of additives in high temperature phosphoric acid on the etching of Si3N4/SiO2 [J]. ECS Transactions, 2019, 92(2): 149-154. |
14 | Kim T, Son C, Park T, et al. Effect of SiO2 etching inhibitor to H3PO4 for the selective Si3N4 wet etching of 3D NAND[J]. ECS Transactions, 2019, 92(2): 137-142. |
15 | Liu L, Kashkoush I, Chen G, et al. Maintaining a stable etch selectivity between silicon nitride and silicon dioxide in a hot phosphoric acid bath[J]. ECS Transactions, 2007, 11(2): 63-70. |
16 | Son C, Lim S. Editors' choice—control of Si3N4 etching kinetics and selectivity to SiO2 by the additives in superheated water[J]. ECS Journal of Solid State Science and Technology, 2019, 8(4): N85-N91. |
17 | Seo D, Bae J S, Oh E, et al. Selective wet etching of Si3N4/SiO2 in phosphoric acid with the addition of fluoride and silicic compounds[J]. Microelectronic Engineering, 2014, 118: 66-71. |
18 | Teng K W, Tu S H, Hu S W, et al. Abnormal redeposition of silicate from Si3N4 etching onto SiO2 surfaces in flash memory manufacturing[J]. Journal of Materials Science, 2020, 55(3): 1126-1135. |
19 | Zhou Z H, Wu Y W, Ling H Q, et al. Redeposition mechanism on silicon oxide layers during selective etching process in 3D NAND manufacture[J]. Journal of Industrial and Engineering Chemistry, 2023, 119: 218-225. |
20 | Kim T, Son C, Park T, et al. Oxide regrowth mechanism during silicon nitride etching in vertical 3D NAND structures[J]. Microelectronic Engineering, 2020, 221: 111191. |
21 | Knotter D M. The Chemistry of Wet Etching[M]. Hoboken: John Wiley & Sons, Inc., 2011. |
22 | Bassett D, Printz W, Furukawa T. Etching of silicon nitride in 3D NAND structures[C]// International Symposium on Semiconductor Cleaning Science and Technology, Meetings of the Electrochemical Society. 2015. |
23 | Park S, Jung H, Min K A, et al. Unraveling the selective etching mechanism of silicon nitride over silicon dioxide by phosphoric acid: first-principles study[J]. Applied Surface Science, 2021, 551: 149376. |
24 | Park T, Son C, Kim T, et al. Understanding of Si3N4-H3PO4 reaction chemistry for the control of Si3N4 dissolution kinetics[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 146-154. |
25 | Joseph T, White D. Understanding the role of concentrated phosphoric acid solutions as high-temperature silicon nitride etchants[J]. Journal of Solid State Science and Technology, 2021, 10(2): 024006. |
26 | Yang C, Pham J. Characteristic study of silicon nitride films deposited by LPCVD and PECVD[J]. Silicon, 2018, 10(6): 2561-2567. |
27 | Yin L, Farimani A B, Min K, et al. Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics[J]. Advanced Materials, 2015, 27(11): 1857-1864. |
28 | Lide D R. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2004. |
29 | Krueger R A, Vilčiauskas L, Melchior J P, et al. Mechanism of efficient proton conduction in diphosphoric acid elucidated via first-principles simulation and NMR[J]. The Journal of Physical Chemistry B, 2015, 119(52): 15866-15875. |
30 | Rudolph W W. Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301℃[J]. Journal of Solution Chemistry, 2012, 41(4): 630-645. |
31 | Melchior J P, Kreuer K D, Maier J. Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7-H3PO4·2H2O): a 1H, 31P and 17O PFG-NMR and conductivity study[J]. Physical Chemistry Chemical Physics, 2016, 19(1): 587-600. |
32 | Aihara Y, Sonai A, Hattori M, et al. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR[J]. The Journal of Physical Chemistry. B, 2006, 110(49): 24999-25006. |
33 | Bassett D W, Rotondaro A L P. Silica formation during etching of silicon nitride in phosphoric acid[J]. Solid State Phenomena, 2016, 255: 285-290. |
[1] | Yanping JIA, Yanju MA, Wenxin GUAN, Bin YANG, Jian ZHANG, Lanhe ZHANG. Process conditions optimization and degradation mechanism of dye wastewater by Fe0/H2O2 system using response surface methodology [J]. CIESC Journal, 2025, 76(1): 348-362. |
[2] | Na HUANG, Yunlong JIANG, Donghan WANG, Mingting WU, Xueli JIANG, Yu ZHONG. Numerical study of influence of channel vibration frequency on flow and heat transfer of supercritical n-decane with pyrolysis reaction [J]. CIESC Journal, 2025, 76(1): 173-183. |
[3] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
[4] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[5] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[6] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
[7] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
[8] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[9] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[10] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[11] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[12] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
[13] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[14] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[15] | Zhaoxiang ZHANG, Maokun CAI, Zhiying REN, Xiaohong JIA, Fei GUO. Numerical analysis of the effect of temperature and its fluctuations on the vulcanization process of rubber seals [J]. CIESC Journal, 2024, 75(2): 715-726. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 496
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||