CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1693-1701.DOI: 10.11949/0438-1157.20241122
• Process system engineering • Previous Articles Next Articles
Zheng LI1(), Kaize ZHUANG2, Dongjie ZHAO1, Yanxing SONG1, Gongming WANG3(
)
Received:
2024-10-10
Revised:
2024-12-27
Online:
2025-05-12
Published:
2025-04-25
Contact:
Gongming WANG
李征1(), 庄铠泽2, 赵东杰1, 宋燕星1, 王功明3(
)
通讯作者:
王功明
作者简介:
李征(1990—),女,博士,讲师,lizeebm78@163.com
基金资助:
CLC Number:
Zheng LI, Kaize ZHUANG, Dongjie ZHAO, Yanxing SONG, Gongming WANG. Design method of event-driven deep belief network soft-sensing model[J]. CIESC Journal, 2025, 76(4): 1693-1701.
李征, 庄铠泽, 赵东杰, 宋燕星, 王功明. 事件驱动的深度信念网络软测量模型设计方法[J]. 化工学报, 2025, 76(4): 1693-1701.
方法 | 训练集① RMSE/(mg/m3) | 训练集参数有效更新次数 | 预测集① RMSE/(mg/m3) | 预测集① 运行时间/s |
---|---|---|---|---|
EDDBN | 1.2865±0.2043 | 217±6(63.83%±1%)↓ | 1.4689±0.2716 | 11.47±0.96 |
FNN | 3.5482±0.4637 | 600 | 4.2716±0.5163 | 15.89±1.35 |
DBN | 3.1692±0.3407 | 600 | 3.8649±0.3729 | 19.54±1.12 |
DFNN | 2.3914±0.3127 | 600 | 3.1208±0.3451 | 18.12±1.05 |
LSTMNN | 4.8724±0.5841 | 600 | 6.1520±0.6913 | 16.37±1.48 |
RBFNN | 4.2319±0.5164 | 600 | 5.7628±0.6228 | 17.35±1.39 |
BPNN | 6.3514±0.7236 | 600 | 7.8267±0.8132 | 23.56±1.87 |
ESN | 3.4226±0.5437 | 600 | 4.1692±0.6557 | 14.93±1.43 |
DESN | 2.7163±0.3916 | 600 | 3.1376±0.4158 | 17.86±1.26 |
Table 1 Comparison results of EDDBN soft-sensing model with the others in SO2 prediction set ①
方法 | 训练集① RMSE/(mg/m3) | 训练集参数有效更新次数 | 预测集① RMSE/(mg/m3) | 预测集① 运行时间/s |
---|---|---|---|---|
EDDBN | 1.2865±0.2043 | 217±6(63.83%±1%)↓ | 1.4689±0.2716 | 11.47±0.96 |
FNN | 3.5482±0.4637 | 600 | 4.2716±0.5163 | 15.89±1.35 |
DBN | 3.1692±0.3407 | 600 | 3.8649±0.3729 | 19.54±1.12 |
DFNN | 2.3914±0.3127 | 600 | 3.1208±0.3451 | 18.12±1.05 |
LSTMNN | 4.8724±0.5841 | 600 | 6.1520±0.6913 | 16.37±1.48 |
RBFNN | 4.2319±0.5164 | 600 | 5.7628±0.6228 | 17.35±1.39 |
BPNN | 6.3514±0.7236 | 600 | 7.8267±0.8132 | 23.56±1.87 |
ESN | 3.4226±0.5437 | 600 | 4.1692±0.6557 | 14.93±1.43 |
DESN | 2.7163±0.3916 | 600 | 3.1376±0.4158 | 17.86±1.26 |
方法 | 训练集② RMSE/(mg/m3) | 训练集参数有效更新次数 | 预测集② RMSE/(mg/m3) | 预测集② 运行时间/s |
---|---|---|---|---|
EDDBN | 1.3098±0.2371 | 220±5(63.33%±1%)↓ | 1.5215±0.2833 | 11.32±0.94 |
FNN | 3.5203±0.4529 | 600 | 4.2518±0.5015 | 15.97±1.37 |
DBN | 3.1829±0.3561 | 600 | 3.8973±0.3869 | 19.67±1.13 |
DFNN | 2.6718±0.3371 | 600 | 3.3824±0.3652 | 18.75±1.09 |
LSTMNN | 4.8892±0.5974 | 600 | 6.1745±0.7108 | 16.49±1.50 |
RBFNN | 4.2031±0.4972 | 600 | 5.7403±0.6102 | 17.21±1.37 |
BPNN | 6.3764±0.7398 | 600 | 7.8429±0.8357 | 23.82±1.90 |
ESN | 3.4972±0.5564 | 600 | 4.1875±0.6794 | 15.13±1.47 |
DESN | 2.9258±0.4107 | 600 | 3.4507±0.4378 | 18.35±1.29 |
Table 2 Comparison results of EDDBN soft-sensing model with the others in SO2 prediction set ②
方法 | 训练集② RMSE/(mg/m3) | 训练集参数有效更新次数 | 预测集② RMSE/(mg/m3) | 预测集② 运行时间/s |
---|---|---|---|---|
EDDBN | 1.3098±0.2371 | 220±5(63.33%±1%)↓ | 1.5215±0.2833 | 11.32±0.94 |
FNN | 3.5203±0.4529 | 600 | 4.2518±0.5015 | 15.97±1.37 |
DBN | 3.1829±0.3561 | 600 | 3.8973±0.3869 | 19.67±1.13 |
DFNN | 2.6718±0.3371 | 600 | 3.3824±0.3652 | 18.75±1.09 |
LSTMNN | 4.8892±0.5974 | 600 | 6.1745±0.7108 | 16.49±1.50 |
RBFNN | 4.2031±0.4972 | 600 | 5.7403±0.6102 | 17.21±1.37 |
BPNN | 6.3764±0.7398 | 600 | 7.8429±0.8357 | 23.82±1.90 |
ESN | 3.4972±0.5564 | 600 | 4.1875±0.6794 | 15.13±1.47 |
DESN | 2.9258±0.4107 | 600 | 3.4507±0.4378 | 18.35±1.29 |
1 | 中华人民共和国国务院. 国家重大科技基础设施建设中长期规划(2012—2030年)[Z/OL]. [2013-02-23]. . |
The State Council of the People's Republic of China. National medium and long term plan for major science and technology infrastructure construction (2012—2030)[Z/OL]. [2013-02-23]. . | |
2 | 李文俊, 赵中阳, 倪震, 等. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
Li W J, Zhao Z Y, Ni Z, et al. CFD numerical simulation of wet flue gas desulfurization: performance improvement based on gas-liquid mass transfer enhancement[J]. CIESC Journal, 2024, 75(2): 505-519. | |
3 | Yi H, Su Z G, Wang P H. Closed-loop shaping-based active disturbance rejection control with delay robustness and application to wet desulfurization process[J]. IEEE Transactions on Industrial Electronics, 2024, 71(6): 6117-6127. |
4 | Cai Y K, Lv L, Lu X P. The effects of inner electrode diameter on the performance of dielectric barrier discharge reactor for desulfurization and denitrification[J]. IEEE Transactions on Plasma Science, 2021, 49(2): 786-793. |
5 | Yamamoto H, Kuroki T, Fujishima H, et al. Pilot-scale NO x and SO x aftertreatment using a two-phase ozone and chemical injection in glass-melting-furnace exhaust gas[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6295-6302. |
6 | Qu J Y, Qi N N, Zhang K, et al. Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process[J]. Chinese Journal of Chemical Engineering, 2021, 29: 13-26. |
7 | Cheng T, Zhou X C, Yang L J, et al. Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system[J]. Journal of Environmental Sciences, 2020, 88: 72-80. |
8 | 王功明, 李文静, 乔俊飞. 基于PLSR自适应深度信念网络的出水总磷预测[J]. 化工学报, 2017, 68(5): 1987-1997. |
Wang G M, Li W J, Qiao J F. Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network[J]. CIESC Journal, 2017, 68(5): 1987-1997. | |
9 | Wang G M, Chen H, Han H G, et al. Predicting water quality with nonstationarity: event-triggered deep fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(5): 2690-2699. |
10 | Yuan X F, Qi S B, Wang Y L. Stacked enhanced auto-encoder for data-driven soft sensing of quality variable[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7953-7961. |
11 | Wang G M, Chen H, Jiang S L, et al. Neurodynamics-driven prediction model for state evolution of coastal water quality[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2519409. |
12 | 蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量[J]. 自动化学报, 2019, 45(5): 906-919. |
Meng X, Qiao J F, Han H G. Soft measurement of key effluent parameters in wastewater treatment process using brain-like modular neural networks[J]. Acta Automatica Sinica, 2019, 45(5): 906-919. | |
13 | 周乐, 沈程凯, 吴超, 等. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
Zhou L, Shen C K, Wu C, et al. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165. | |
14 |
汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二![]() |
Tang J, Qiao J F. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm[J]. CIESC Journal, 2019, 70(2): 696-706. | |
15 |
夏恒, 汤健, 崔璨麟, 等. 基于宽度混合森林回归的城市固废焚烧过程二![]() |
Xia H, Tang J, Cui C L, et al. Soft sensing method of dioxin emission in municipal solid waste incineration process based on broad hybrid forest regression[J]. Acta Automatica Sinica, 2023, 49(2): 343-365. | |
16 | 韩红桂, 陈治远, 乔俊飞, 等. 基于区间二型模糊神经网络的出水氨氮软测量[J]. 化工学报, 2017, 68(3): 1032-1040. |
Han H G, Chen Z Y, Qiao J F, et al. Soft-sensor method for effluent ammonia nitrogen based on interval type-2 fuzzy neural networks[J]. CIESC Journal, 2017, 68(3): 1032-1040. | |
17 | 曹跃, 陈志文, 袁小锋, 等. 部分子块通讯的分布式PCA厂级工业过程监测方法[J]. 控制与决策, 2020, 35(6): 1281-1290. |
Cao Y, Chen Z W, Yuan X F, et al. Distributed PCA for plant-wide processes monitoring with partial block communication[J]. Control and Decision, 2020, 35(6): 1281-1290. | |
18 | Liu S, Zhong W Q, Chen X, et al. Multiobjective economic model predictive control using utopia-tracking for the wet flue gas desulphurization system[J]. Chinese Journal of Chemical Engineering, 2023, 54: 343-352. |
19 | Wang Q Y, Zhao H, Zhao Q L, et al. Prediction of SO2 emission concentration in industrial flue gas based on deep learning: the ammonia desulfurization system of the Yunnan aluminum carbon plant as the research object[J]. Process Safety and Environmental Protection, 2024, 185: 340-349. |
20 | Dabadghao V, Biegler L T, Bhattacharyya D. Multiscale modeling and nonlinear model predictive control for flue gas desulfurization[J]. Chemical Engineering Science, 2022, 252: 117451. |
21 | Yin X H, Sun K, Li S Y, et al. Enhancing deep learning for the comprehensive forecast model in flue gas desulfurization systems[J]. Control Engineering Practice, 2023, 138: 105587. |
22 | 王康成, 尚超, 柯文思, 等. 化工过程深度神经网络软测量的结构与参数自动调整方法[J]. 化工学报, 2018, 69(3): 900-906. |
Wang K C, Shang C, Ke W S, et al. Automatic structure and parameters tuning method for deep neural network soft sensor in chemical industries[J]. CIESC Journal, 2018, 69(3): 900-906. | |
23 | 耿志强, 徐猛, 朱群雄, 等. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571. |
Geng Z Q, Xu M, Zhu Q X, et al. Research and application of soft measurement model for complex chemical processes based on deep learning[J]. CIESC Journal, 2019, 70(2): 564-571. | |
24 | Wang K, Yuan X F, Chen J, et al. Supervised and semi-supervised probabilistic learning with deep neural networks for concurrent process-quality monitoring[J]. Neural Networks, 2021, 136: 54-62. |
25 | Wang G M, Jia Q S, Zhou M C, et al. Artificial neural networks for water quality soft-sensing in wastewater treatment: a review[J]. Artificial Intelligence Review, 2022, 55(1): 565-587. |
26 | Wang G M, Bi J, Jia Q S, et al. Event-driven model predictive control with deep learning for wastewater treatment process[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6398-6407. |
27 | Wang G M, Jia Q S, Zhou M C, et al. Soft-sensing of wastewater treatment process via deep belief network with event-triggered learning[J]. Neurocomputing, 2021, 436: 103-113. |
28 | 贾庆山, 杨玉, 夏俐, 等. 基于事件的优化方法简介及其在能源互联网中的应用[J]. 控制理论与应用, 2018, 35(1): 32-40. |
Jia Q S, Yang Y, Xia L, et al. A tutorial on event-based optimization with application in energy Internet[J]. Control Theory & Applications, 2018, 35(1): 32-40. | |
29 | Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. |
30 | Cao X R. Stochastic learning and optimization—a sensitivity-based approach[J]. Annual Reviews in Control, 2009, 33(1): 11-24. |
[1] | Yi ZHONG, Shiyu ZHOU, Lianchao JIU, Yuxiao LI, Haojiang WU, Zhiyong ZHOU. Research progress on direct remediation and regeneration of cathode materials from spent lithium iron phosphate batteries [J]. CIESC Journal, 2024, 75(S1): 1-13. |
[2] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
[3] | Hongrui LI, Chunxi HUANG, Xiaodong HONG, Zuwei LIAO, Jingdai WANG, Yongrong YANG. An adaptive variable-step homotopy-based algorithm for process simulation with cyclic streams [J]. CIESC Journal, 2024, 75(7): 2604-2612. |
[4] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[5] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[6] | Wenhua LI, Hongtao YE, Wenguang LUO, Yiqi LIU. Soft sensor modeling based on MHSA-LSTM and its application in chemical process [J]. CIESC Journal, 2024, 75(12): 4654-4665. |
[7] | Qishun LIU, Deyu CHU, Jinjing MA, Heng YIN. Advancements and obstacles in the production of nitrogen-containing bio-based chemicals from chitin biomass [J]. CIESC Journal, 2024, 75(11): 4065-4081. |
[8] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[11] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[12] | Lingjian YE. Self-optimizing control for chemical processes: principle, developments and outlooks [J]. CIESC Journal, 2023, 74(11): 4445-4465. |
[13] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[14] | Zhuang YUAN, Yiqun LING, Zhe YANG, Chuankun LI. Critical parameters prediction based on TA-ConvBiLSTM for chemical process [J]. CIESC Journal, 2022, 73(1): 342-351. |
[15] | Hengyuan LIU, Haihui WANG, Jianhong XU. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen [J]. CIESC Journal, 2022, 73(1): 32-45. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||