CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4065-4081.DOI: 10.11949/0438-1157.20240863
• Reviews and monographs • Previous Articles Next Articles
Qishun LIU1(), Deyu CHU1,2, Jinjing MA1,2, Heng YIN1(
)
Received:
2024-07-29
Revised:
2024-09-20
Online:
2024-12-26
Published:
2024-11-25
Contact:
Heng YIN
通讯作者:
尹恒
作者简介:
刘启顺(1981—),男,硕士,高级工程师,liuqishuen@dicp.ac.cn
基金资助:
CLC Number:
Qishun LIU, Deyu CHU, Jinjing MA, Heng YIN. Advancements and obstacles in the production of nitrogen-containing bio-based chemicals from chitin biomass[J]. CIESC Journal, 2024, 75(11): 4065-4081.
刘启顺, 褚德育, 马金晶, 尹恒. 几丁质生物质制备含氮生物基化学品进展及挑战[J]. 化工学报, 2024, 75(11): 4065-4081.
反应体系 | 反应溶剂 | 底物浓度 | 催化剂 | 反应温度/℃ | 反应时间/h | 收率/% | 文献 |
---|---|---|---|---|---|---|---|
水 | 38% HCl | 20% (质量分数) | HCl | 30 (超声处理) | 4 | 65 | [ |
离子液体 | [C4MIM]Cl | 1% (质量分数) | 6% (质量分数) [C3SO3HMIM]OTf | 120 | 5 | 15 | [ |
熔盐水合物 | 50% CaCl2-H2O | 50 g/L | 10% ZnBr2 | 120 | 1 | 66.8 | [ |
熔盐水合物 | 60% LiCl-H2O | 50 g/L | 40 mmol/L HCl | 120 | 0.5 | 71.5 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | SAPO-34 (20 g/L) | 130 | 2 | 63 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | Hβ (20 g/L) | 130 | 2 | 约20 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | HUSY (20 g/L) | 130 | 2 | 约45 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | ZSM-5 (20 g/L) | 130 | 2 | 约60 | [ |
水 | 机械球磨 | 底物/催化剂=2.0 | H2SO4 | 170 | 1 | 53 | [ |
甲醇 | 机械球磨 | 底物/催化剂=4.1 | H2SO4 | 170 | 1 | 70 (产物为1-O-甲基-N- 乙酰氨基葡萄糖) | [ |
水 | 机械球磨 | 底物/催化剂=1.25 | 氧化活性炭 | 40~50 | 12 | 可溶物72% (其中NAG 8.3%,寡糖66%) | [ |
水 | 机械球磨 | 底物/催化剂=1.25 | ZSM-5 | 40~50 | 12 | 可溶物23% (其中NAG1.6%,寡糖9.3%) | [ |
水 | 机械球磨 | 底物/催化剂=4.0 | H2SO4 | 40~50 | 2 | 可溶物95%,其中NAG 7.3%,寡糖62% | [ |
水 | 机械球磨 | 底物/催化剂=1.0 | 高岭土 | — | 4 | 可溶物75.8% (其中NAG 5.1%,二聚物3.9%) | [ |
非极性溶剂 | 乙二醇∶水=4∶1 (体积比) | 15% (质量分数) | 8% H2SO4(相对溶剂) | 165 | 1.5 | 可溶物75% (其中30%为HADP和HAADP) | [ |
Table 1 Advancements in the production of NAG and oligomers through chitin hydrolysis
反应体系 | 反应溶剂 | 底物浓度 | 催化剂 | 反应温度/℃ | 反应时间/h | 收率/% | 文献 |
---|---|---|---|---|---|---|---|
水 | 38% HCl | 20% (质量分数) | HCl | 30 (超声处理) | 4 | 65 | [ |
离子液体 | [C4MIM]Cl | 1% (质量分数) | 6% (质量分数) [C3SO3HMIM]OTf | 120 | 5 | 15 | [ |
熔盐水合物 | 50% CaCl2-H2O | 50 g/L | 10% ZnBr2 | 120 | 1 | 66.8 | [ |
熔盐水合物 | 60% LiCl-H2O | 50 g/L | 40 mmol/L HCl | 120 | 0.5 | 71.5 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | SAPO-34 (20 g/L) | 130 | 2 | 63 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | Hβ (20 g/L) | 130 | 2 | 约20 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | HUSY (20 g/L) | 130 | 2 | 约45 | [ |
熔盐水合物 | 60% LiCl-H2O | 25 g/L | ZSM-5 (20 g/L) | 130 | 2 | 约60 | [ |
水 | 机械球磨 | 底物/催化剂=2.0 | H2SO4 | 170 | 1 | 53 | [ |
甲醇 | 机械球磨 | 底物/催化剂=4.1 | H2SO4 | 170 | 1 | 70 (产物为1-O-甲基-N- 乙酰氨基葡萄糖) | [ |
水 | 机械球磨 | 底物/催化剂=1.25 | 氧化活性炭 | 40~50 | 12 | 可溶物72% (其中NAG 8.3%,寡糖66%) | [ |
水 | 机械球磨 | 底物/催化剂=1.25 | ZSM-5 | 40~50 | 12 | 可溶物23% (其中NAG1.6%,寡糖9.3%) | [ |
水 | 机械球磨 | 底物/催化剂=4.0 | H2SO4 | 40~50 | 2 | 可溶物95%,其中NAG 7.3%,寡糖62% | [ |
水 | 机械球磨 | 底物/催化剂=1.0 | 高岭土 | — | 4 | 可溶物75.8% (其中NAG 5.1%,二聚物3.9%) | [ |
非极性溶剂 | 乙二醇∶水=4∶1 (体积比) | 15% (质量分数) | 8% H2SO4(相对溶剂) | 165 | 1.5 | 可溶物75% (其中30%为HADP和HAADP) | [ |
原料 | 溶剂 | 催化剂/添加剂 | 反应温度/℃ | 反应时间/min | 3A5AF收率/% | 文献 |
---|---|---|---|---|---|---|
NAG | DMAc | B(OH)3/NaCl | 220 | 15 | 62 | [ |
NAG | DMF | AlCl3/- | 120 | 30 | 30 | [ |
NAG | NMP | MgCl2/B2O3 | 180 | 60 | 41 | [ |
几丁质 | NMP | B(OH)3/NaCl | 215 | 90 | 7 | [ |
几丁质 (球磨预处理) | [BMIM]Cl | B(OH)3/HCl | 180 | 10 | 28 | [ |
NAG | [BMIM]Cl | B(OH)3/- | 180 | 60 | 60 | [ |
NAG | [BMIM]Cl | -/- | 180 | 3 | 25 | [ |
NAG | [Gly]Cl | CaCl2/- | 200 | 10 | 52 | [ |
NAG | DMAc | [Pyz]Cl/B(OH)3-CaCl2 | 190 | 60 | 69 | [ |
NAG | NMP | [PDCMPi]Cl/- | 180 | 20 | 42 | [ |
NAG | DMAc | (ChCl-CA)/CaCl2 | 210 | 20 | 47 | [ |
NAG | DES | (ChCl-PEG-B(OH)3)/- | 180 | 15 | 18 | [ |
NAG | DMAc | (ChCl-Gly-B(OH)3)/- | 140 | 150 | 39 | [ |
NAG | NMP | [CMPy]Cl/B2O3/CaCl2 | 180 | 20 | 67 | [ |
NAG | DMF | NH4Cl/LiCl | 160 | 5 | 43 | [ |
NAG | GVL | NH4SCN/HCl | 140 | 120 | 75 | [ |
NAG | DMAc | Al-Mont/NaCl | 160 | 120 | 14 | [ |
NAG | DMAc | H-ZSM-5/NaCl | 160 | 120 | 9 | [ |
NAG | 1,4-二氧六环 | La2O3/- | 180 | 180 | 21 | [ |
Table 2 Major progress on the preparation of 3A5AF from NAG or chitin
原料 | 溶剂 | 催化剂/添加剂 | 反应温度/℃ | 反应时间/min | 3A5AF收率/% | 文献 |
---|---|---|---|---|---|---|
NAG | DMAc | B(OH)3/NaCl | 220 | 15 | 62 | [ |
NAG | DMF | AlCl3/- | 120 | 30 | 30 | [ |
NAG | NMP | MgCl2/B2O3 | 180 | 60 | 41 | [ |
几丁质 | NMP | B(OH)3/NaCl | 215 | 90 | 7 | [ |
几丁质 (球磨预处理) | [BMIM]Cl | B(OH)3/HCl | 180 | 10 | 28 | [ |
NAG | [BMIM]Cl | B(OH)3/- | 180 | 60 | 60 | [ |
NAG | [BMIM]Cl | -/- | 180 | 3 | 25 | [ |
NAG | [Gly]Cl | CaCl2/- | 200 | 10 | 52 | [ |
NAG | DMAc | [Pyz]Cl/B(OH)3-CaCl2 | 190 | 60 | 69 | [ |
NAG | NMP | [PDCMPi]Cl/- | 180 | 20 | 42 | [ |
NAG | DMAc | (ChCl-CA)/CaCl2 | 210 | 20 | 47 | [ |
NAG | DES | (ChCl-PEG-B(OH)3)/- | 180 | 15 | 18 | [ |
NAG | DMAc | (ChCl-Gly-B(OH)3)/- | 140 | 150 | 39 | [ |
NAG | NMP | [CMPy]Cl/B2O3/CaCl2 | 180 | 20 | 67 | [ |
NAG | DMF | NH4Cl/LiCl | 160 | 5 | 43 | [ |
NAG | GVL | NH4SCN/HCl | 140 | 120 | 75 | [ |
NAG | DMAc | Al-Mont/NaCl | 160 | 120 | 14 | [ |
NAG | DMAc | H-ZSM-5/NaCl | 160 | 120 | 9 | [ |
NAG | 1,4-二氧六环 | La2O3/- | 180 | 180 | 21 | [ |
原料 | 溶剂 | 反应温度/℃ | 时间/s | 反应压力/bar(或催化剂) | 产物(收率/%) | 文献 |
---|---|---|---|---|---|---|
NAG | 硼酸缓冲液(pH 7) | 100 | 2 | — | 3, 6-AGF(10.2),3, 6-AMF(9.8) | [ |
NAG | 高温水 | 220 | 39 | 250 | 色原Ⅰ(23),色原Ⅲ(23.1) | [ |
NAG | 高温水 | 280 | 34 | 250 | 色原Ⅰ(37),色原Ⅲ(34.5) | [ |
几丁质 | 高温水 | 390 | 3600 | 250 | 色原Ⅰ(2.6) | [ |
几丁质 | NaOH溶液 | 300 | 300 | CuO | 吡咯(6) | [ |
Table 3 Synthesis of chromogens and anhydrosugars from NAG and chitin
原料 | 溶剂 | 反应温度/℃ | 时间/s | 反应压力/bar(或催化剂) | 产物(收率/%) | 文献 |
---|---|---|---|---|---|---|
NAG | 硼酸缓冲液(pH 7) | 100 | 2 | — | 3, 6-AGF(10.2),3, 6-AMF(9.8) | [ |
NAG | 高温水 | 220 | 39 | 250 | 色原Ⅰ(23),色原Ⅲ(23.1) | [ |
NAG | 高温水 | 280 | 34 | 250 | 色原Ⅰ(37),色原Ⅲ(34.5) | [ |
几丁质 | 高温水 | 390 | 3600 | 250 | 色原Ⅰ(2.6) | [ |
几丁质 | NaOH溶液 | 300 | 300 | CuO | 吡咯(6) | [ |
反应物 | 催化剂 | 溶剂 | 反应温度/℃ | 反应时间/min | 压力/bar | 产物(收率/%) | 文献 |
---|---|---|---|---|---|---|---|
NAG | Ru(1)/C | 水 | 180 | 1 | 40(H2) | C2~C4多元醇(6.1),含氮C6多元醇(71.9),NMEA (8.7) | [ |
NAG | Ru(5)/C+ | 水 | 120 | 1 | 40(H2) | NMEA (15) | [ |
NaHCO3 | 120 | 1 | 10(O2) | AG (21) | [ | ||
NAG | Ni(10)/CeO2 | NaHCO3 | 120 | 8 | 40(H2) | NMEA (42) | [ |
NAG | Ru/C | H3PO4 | 250 | 2 | 40(H2) | 有机胺 (47.5) | [ |
几丁质① | Ru(5)/TiO2 | 水 | 175②,120③ | 2 | 40(H2) | ADS (52) | [ |
Table 4 Conversion of chitin and chitin derivatives to other nitrogen-containing chemicals
反应物 | 催化剂 | 溶剂 | 反应温度/℃ | 反应时间/min | 压力/bar | 产物(收率/%) | 文献 |
---|---|---|---|---|---|---|---|
NAG | Ru(1)/C | 水 | 180 | 1 | 40(H2) | C2~C4多元醇(6.1),含氮C6多元醇(71.9),NMEA (8.7) | [ |
NAG | Ru(5)/C+ | 水 | 120 | 1 | 40(H2) | NMEA (15) | [ |
NaHCO3 | 120 | 1 | 10(O2) | AG (21) | [ | ||
NAG | Ni(10)/CeO2 | NaHCO3 | 120 | 8 | 40(H2) | NMEA (42) | [ |
NAG | Ru/C | H3PO4 | 250 | 2 | 40(H2) | 有机胺 (47.5) | [ |
几丁质① | Ru(5)/TiO2 | 水 | 175②,120③ | 2 | 40(H2) | ADS (52) | [ |
1 | Song Y G, Zhang X Y, Hu G H. Relationships among geopolitical risk, trade policy uncertainty, and crude oil import prices: evidence from China[J]. Resources Policy, 2023, 82: 103555. |
2 | Antar M, Lyu D M, Nazari M, et al. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110691. |
3 | Jing Y X, Guo Y, Xia Q N, et al. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass[J]. Chem, 2019, 5(10): 2520-2546. |
4 | Ma J P, Shi S, Jia X Q, et al. Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels[J]. Journal of Energy Chemistry, 2019, 36: 74-86. |
5 | Chen X, Song S, Li H Y, et al. Expanding the boundary of biorefinery: organonitrogen chemicals from biomass[J]. Accounts of Chemical Research, 2021, 54(7): 1711-1722. |
6 | Hülsey M J. Shell biorefinery: a comprehensive introduction[J]. Green Energy & Environment, 2018, 3(4): 318-327. |
7 | Ma X Q, Gözaydın G, Yang H Y, et al. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(14): 7719-7728. |
8 | Yan N, Chen X. Sustainability: don’t waste seafood waste[J]. Nature, 2015, 524(7564): 155-157. |
9 | Uto T, Idenoue S, Yamamoto K, et al. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study[J]. Physical Chemistry Chemical Physics, 2018, 20(31): 20669-20677. |
10 | Özel N, Elibol M. A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes[J]. Carbohydrate Polymers, 2021, 262: 117942. |
11 | Khajavian M, Vatanpour V, Castro-Muñoz R, et al. Chitin and derivative chitosan-based structures-preparation strategies aided by deep eutectic solvents: a review[J]. Carbohydrate Polymers, 2022, 275: 118702. |
12 | Shamshina J L. Chitin in ionic liquids: historical insights into the polymer’s dissolution and isolation. A review[J]. Green Chemistry, 2019, 21(15): 3974-3993. |
13 | Shamshina J L, Berton P. Use of ionic liquids in chitin biorefinery: a systematic review[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 11. |
14 | Dai J H, Li F K, Fu X. Towards shell biorefinery: advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals[J]. ChemSusChem, 2020, 13(24): 6498-6508. |
15 | Gao K, Qin Y K, Liu S, et al. A review of the preparation, derivatization and functions of glucosamine and N-acetyl-glucosamine from chitin[J]. Carbohydrate Polymer Technologies and Applications, 2023, 5: 100296. |
16 | Kobayashi H, Sagawa T, Fukuoka A. Catalytic conversion of chitin as a nitrogen-containing biomass[J]. Chemical Communications, 2023, 59(42): 6301-6313. |
17 | Cai X, Wang Z C, Ye Y Y, et al. Conversion of chitin biomass into 5-hydroxymethylfurfural: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111452. |
18 | Gao X Y, Chen X, Zhang J G, et al. Transformation of chitin and waste shrimp shells into acetic acid and pyrrole[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3912-3920. |
19 | Cao S L, Liu Y X, Shi L M, et al. N-acetylglucosamine as a platform chemical produced from renewable resources: opportunity, challenge, and future prospects[J]. Green Chemistry, 2022, 24(2): 493-509. |
20 | Jang M K, Kong B G, Jeong Y I, et al. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(14): 3423-3432. |
21 | Reichert W M, Mirjafari A, Davis J H, et al. Degradation of chitin utilizing acid functionalized ionic liquids technology[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2012: 189-198. |
22 | Kumar M, Rajput M, Soni T, et al. Chemoenzymatic production and engineering of chitooligosaccharides and N-acetyl glucosamine for refining biological activities[J]. Frontiers in Chemistry, 2020, 8: 469. |
23 | Liu Y H, Qin Z, Wang C L, et al. N-acetyl-D-glucosamine-based oligosaccharides from chitin: enzymatic production, characterization and biological activities[J]. Carbohydrate Polymers, 2023, 315: 121019. |
24 | Einbu A, Grasdalen H, Vårum K M. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid[J]. Carbohydrate Research, 2007, 342(8): 1055-1062. |
25 | Kazami N, Sakaguchi M, Mizutani D, et al. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid[J]. Carbohydrate Polymers, 2015, 132: 304-310. |
26 | Mojarrad J S, Nemati M, Valizadeh H, et al. Preparation of glucosamine from exoskeleton of shrimp and predicting production yield by response surface methodology[J]. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2246-2250. |
27 | 刘意, 孙亚, 张华彬. 甲壳素水解制备氨基葡萄糖盐酸盐的优化工艺条件[J]. 应用化工, 2008, 37(4): 373-376. |
Liu Y, Sun Y, Zhang H B. New process of preparation of aminoglucose by hydrolysing chitin[J]. Applied Chemical Industry, 2008, 37(4): 373-376. | |
28 | 游庆红, 尹秀莲. 正交设计优化甲壳素制备D-氨基葡萄糖盐酸盐工艺[J]. 广州化工, 2013, 41(10): 71-72, 88. |
You Q H, Yin X L. Preparation of D-glucosamine hydrochloride from chitin by orthogonal experimental design[J]. Guangzhou Chemical Industry, 2013, 41(10): 71-72, 88. | |
29 | 石国宗. 硫酸降解甲壳素制备N-乙酰氨基葡萄糖的工艺研究[J]. 海峡药学, 2016, 28(7): 11-13. |
Shi G Z. Research on the preparation of N-acetyl-D-(+)-glucosamine from the chitin degraded by sulfuric acid[J]. Strait Pharmaceutical Journal, 2016, 28(7): 11-13. | |
30 | 殷竟洲, 单步顺, 杨文澜. N-乙酰-D-氨基葡萄糖的制备条件优化及废液回收利用[J]. 应用化工, 2008, 37(12): 1517-1519. |
Yin J Z, Shan B S, Yang W L. Study of optimization technical condition for preparing N-acetyl-D-glucosamine and recycling the liquid waste[J]. Applied Chemical Industry, 2008, 37(12): 1517-1519. | |
31 | Poshina D N, Raik S V, Poshin A N, et al. Accessibility of chitin and chitosan in enzymatic hydrolysis: a review[J]. Polymer Degradation and Stability, 2018, 156: 269-278. |
32 | Arnold N D, Brück W M, Garbe D, et al. Enzymatic modification of native chitin and conversion to specialty chemical products[J]. Marine Drugs, 2020, 18(2): 93-119. |
33 | Ajavakom A, Supsvetson S, Somboot A, et al. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin[J]. Carbohydrate Polymers, 2012, 90(1): 73-77. |
34 | Chen B Q, Sun K, Zhang K B. Rheological properties of chitin/lithium chloride, N, N-dimethyl acetamide solutions[J]. Carbohydrate Polymers, 2004, 58(1): 65-69. |
35 | Hu X W, Du Y M, Tang Y F, et al. Solubility and property of chitin in NaOH/urea aqueous solution[J]. Carbohydrate Polymers, 2007, 70(4): 451-458. |
36 | Deng W H, Kennedy J R, Tsilomelekis G, et al. Cellulose hydrolysis in acidified LiBr molten salt hydrate media[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5226-5236. |
37 | Li N, Pan X J, Alexander J. A facile and fast method for quantitating lignin in lignocellulosic biomass using acidic lithium bromide trihydrate (ALBTH)[J]. Green Chemistry, 2016, 18(19): 5367-5376. |
38 | Gözaydın G, Song S, Yan N. Chitin hydrolysis in acidified molten salt hydrates[J]. Green Chemistry, 2020, 22(15): 5096-5104. |
39 | Wang Y D, Kou J, Wang X W, et al. Acid hydrolysis of chitin in calcium chloride solutions[J]. Green Chemistry, 2023, 25(7): 2596-2607. |
40 | Gözaydın G, Sun Q M, Oh M, et al. Chitin hydrolysis using zeolites in lithium bromide molten salt hydrate[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2511-2519. |
41 | Beyer M K, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalent bonds[J]. Chemical Reviews, 2005, 105(8): 2921-2948. |
42 | Barakat A, Mayer-Laigle C, Solhy A, et al. Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production[J]. RSC Advances, 2014, 4(89): 48109-48127. |
43 | Yabushita M, Kobayashi H, Kuroki K, et al. Catalytic depolymerization of chitin with retention of N-acetyl group[J]. ChemSusChem, 2015, 8(22): 3760-3763. |
44 | Kaku H, Nishizawa Y, Ishii-Minami N, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(29): 11086-11091. |
45 | Yin H, Du Y G, Dong Z M. Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors[J]. Frontiers in Plant Science, 2016, 7: 522. |
46 | 吴平格, 高辉, 王宏雁, 等. 由甲壳素制备N-乙酰葡萄糖胺二聚糖的研究[J]. 河南科学, 2005, 23(5): 663-666. |
Wu P G, Gao H, Wang H Y, et al. The preparation of dimeric N-acet-glucosamine by hydrolytic degradaion using hydrochloric acid from chitin[J]. Henan Science, 2005, 23(5): 663-666. | |
47 | Margoutidis G, Parsons V H, Bottaro C S, et al. Mechanochemical amorphization of α-chitin and conversion into oligomers of N-acetyl-D-glucosamine[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1662-1669. |
48 | Kobayashi H, Suzuki Y, Sagawa T, et al. Selective synthesis of oligosaccharides by mechanochemical hydrolysis of chitin over a carbon-based catalyst[J]. Angewandte Chemie International Edition, 2023, 62(3): e202214229. |
49 | Pierson Y, Chen X, Bobbink F D, et al. Acid-catalyzed chitin liquefaction in ethylene glycol[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(8): 2081-2089. |
50 | De Chavez D, Kobayashi H, Fukuoka A, et al. On the electronic structure origin of mechanochemically induced selectivity in acid-catalyzed chitin hydrolysis[J]. The Journal of Physical Chemistry. A, 2021, 125(1): 187-197. |
51 | Zhang J G, Yan N. Formic acid-mediated liquefaction of chitin[J]. Green Chemistry, 2016, 18(18): 5050-5058. |
52 | Lin L F, Han X, Han B X, et al. Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism[J]. Chemical Society Reviews, 2021, 50(20): 11270-11292. |
53 | Pham T T, Chen X, Yan N, et al. A novel dihydrodifuropyridine scaffold derived from ketones and the chitin-derived heterocycle 3-acetamido-5-acetylfuran[J]. Monatshefte Für Chemie-Chemical Monthly, 2018, 149(4): 857-861. |
54 | Sadiq A D, Chen X, Yan N, et al. Towards the shell biorefinery: sustainable synthesis of the anticancer alkaloid Proximicin A from chitin[J]. ChemSusChem, 2018, 11(3): 532-535. |
55 | Pereira J G, Ravasco J M J M, Vale J R, et al. A direct Diels–Alder reaction of chitin derived 3-acetamido-5-acetylfuran[J]. Green Chemistry, 2022, 24(18): 7131-7136. |
56 | Xie S Q, Li Z X. Closing carbon and nitrogen cycles and addressing a critical global challenge: from seafood waste to sustainable chemicals[J]. Journal of Cleaner Production, 2023, 388: 135931. |
57 | Pham T T, Gözaydın G, Söhnel T, et al. Oxidative ring-expansion of a chitin-derived platform enables access to unexplored 2-amino sugar chemical space[J]. European Journal of Organic Chemistry, 2019, 2019(6): 1355-1360. |
58 | Pham T T, Lindsay A C, Kim S W, et al. Two-step preparation of diverse 3-amidofurans from chitin[J]. ChemistrySelect, 2019, 4(34): 10097-10099. |
59 | Franich R A, Goodin S J, Wilkins A L. Acetamidofurans, acetamidopyrones, and acetamidoacetaldehyde from pyrolysis of chitin and n-acetylglucosamine[J]. Journal of Analytical and Applied Pyrolysis, 1984, 7(1/2): 91-100. |
60 | Omari K W, Dodot L, Kerton F M. A simple one-pot dehydration process to convert N-acetyl-D-glucosamine into a nitrogen-containing compound, 3-acetamido-5-acetylfuran[J]. ChemSusChem, 2012, 5(9): 1767-1772. |
61 | Padovan D, Kobayashi H, Fukuoka A. Facile preparation of 3-acetamido-5-acetylfuran from N-acetyl-D-glucosamine by using commercially available aluminum salts[J]. ChemSusChem, 2020, 13(14): 3594-3598. |
62 | Zang H J, Feng Y M, Zhang M C, et al. Valorization of chitin biomass into N-containing chemical 3-acetamido-5-acetylfuran catalyzed by simple Lewis acid[J]. Carbohydrate Research, 2022, 522: 108679. |
63 | Drover M W, Omari K W, Murphy J N, et al. Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-D-glucosamine[J]. RSC Advances, 2012, 2(11): 4642-4644. |
64 | Wang J, Zang H J, Jiao S L, et al. Efficient conversion of N-acetyl-D-glucosamine into nitrogen-containing compound 3-acetamido-5-acetylfuran using amino acid ionic liquid as the recyclable catalyst[J]. Science of the Total Environment, 2020, 710: 136293. |
65 | Du Y N, Zang H J, Feng Y M, et al. Efficient catalytic system for converting N-acetyl-D-glucosamine into valuable chemical 3-acetylamino-5-acetylfuran[J]. Journal of Molecular Liquids, 2022, 347: 117970. |
66 | Zang H J, Feng Y M, Lou J, et al. Synthesis and performance of piperidinium-based ionic liquids as catalyst for biomass conversion into 3-acetamido-5-acetylfuran[J]. Journal of Molecular Liquids, 2022, 366: 120281. |
67 | Wu C Q, Wang C Y, Zhang A L, et al. Preparation of 3-aceta mido-5-acetylfuran from N-acetylglucosamine and chitin using biobased deep eutectic solvents as catalysts[J]. Reaction Chemistry & Engineering, 2022, 7(8): 1742-1749. |
68 | Wang K, Xiao Y F, Wu C C, et al. Direct conversion of chitin derived N-acetyl-D-glucosamine into 3-acetamido-5-acetylfuran in deep eutectic solvents[J]. Carbohydrate Research, 2023, 524: 108742. |
69 | Zhao J C, Pedersen C M, Chang H H, et al. Switchable product selectivity in dehydration of N-acetyl-D-glucosamine promoted by choline chloride-based deep eutectic solvents[J]. iScience, 2023, 26(7): 106980. |
70 | Wang C Y, Wu C Q, Zhang A L, et al. Conversion of N-acetyl-D-glucosamine into 3-acetamido-5-acetylfuran using cheap ammonium chloride as catalyst[J]. ChemistrySelect, 2022, 7(15): e202104574. |
71 | Ji X L, Kou J, Gözaydın G, et al. Boosting 3-acetamido-5-acetylfuran production from N-acetyl-D-glucosamine in γ-valerolactone by a dissolution-dehydration effect[J]. Applied Catalysis B: Environmental, 2024, 342: 123379. |
72 | Chen X, Chew S L, Kerton F M, et al. Direct conversion of chitin into a N-containing furan derivative[J]. Green Chemistry, 2014, 16(4): 2204-2212. |
73 | Chen X, Gao Y J, Wang L, et al. Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals[J]. ChemPlusChem, 2015, 80(10): 1565-1572. |
74 | Sudarsanam P, Zhong R Y, Van den Bosch S, et al. Functionalised heterogeneous catalysts for sustainable biomass valorisation[J]. Chemical Society Reviews, 2018, 47(22): 8349-8402. |
75 | Zang H J, Lou J, Jiao S L, et al. Valorization of chitin derived N-acetyl-D-glucosamine into high valuable N-containing 3-acetamido-5-acetylfuran using pyridinium-based ionic liquids[J]. Journal of Molecular Liquids, 2021, 330: 115667. |
76 | Yamazaki K, Hiyoshi N, Yamaguchi A. Conversion of N-acetylglucosamine to 3-acetamido-5-acetylfuran over Al-exchanged montmorillonite[J]. ChemistryOpen, 2023, 12(12): e202300148. |
77 | Shaikh S S, Patil C R, Lucas N, et al. Direct conversion of N-acetyl-D-glucosamine to N-containing heterocyclic compounds 3-acetamidofuran and 3-acetamido-5-acetyl furan[J]. Waste and Biomass Valorization, 2023, 14(12): 4201-4214. |
78 | Lin C Q, Yang H, Gao X, et al. Biomass to aromatic amine module: alkali catalytic conversion of N-acetylglucosamine into unsubstituted 3-acetamidofuran by retro-aldol condensation[J]. ChemSusChem, 2023, 16(12): e202300133. |
79 | van der Loo C H M, Kaniraj J P, Wang T, et al. Substituted anilides from chitin-based 3-acetamido-furfural[J]. Organic & Biomolecular Chemistry, 2023, 21(41): 8372-8378. |
80 | Yu S B, Zang H J, Chen S, et al. Efficient conversion of chitin biomass into 5-hydroxymethylfurfural over metal salts catalysts in dimethyl sulfoxide-water mixture under hydrothermal conditions[J]. Polymer Degradation and Stability, 2016, 134: 105-114. |
81 | Chen J H, Wang M F, Ho C T. Volatile compounds generated from thermal degradation of N-acetylglucosamine[J]. Journal of Agricultural and Food Chemistry, 1998, 46(8): 3207-3209. |
82 | Ogata M, Hattori T, Takeuchi R, et al. Novel and facile synthesis of furanodictines A and B based on transformation of 2-acetamido-2-deoxy-D-glucose into 3, 6-anhydro hexofuranoses[J]. Carbohydrate Research, 2010, 345(2): 230-234. |
83 | Hore R, Halder T, Pradhan A, et al. Easy access to sauropunols A-D: synthesis and spectroscopy correlation of their natural methyl and ethyl glycosides[J]. ACS Omega, 2023, 8(42): 39739-39748. |
84 | Osada M, Kikuta K, Yoshida K, et al. Non-catalytic synthesis of Chromogen Ⅰ and Ⅲ from N-acetyl-D-glucosamine in high-temperature water[J]. Green Chemistry, 2013, 15(10): 2960-2966. |
85 | Osada M, Kikuta K, Yoshida K, et al. Non-catalytic dehydration of N, N'-diacetylchitobiose in high-temperature water[J]. RSC Advances, 2014, 4(64): 33651-33657. |
86 | Osada M, Shoji S, Suenaga S, et al. Conversion of N-acetyl-D-glucosamine to nitrogen-containing chemicals in high-temperature water[J]. Fuel Processing Technology, 2019, 195: 106154. |
87 | Osada M, Kobayashi H, Miyazawa T, et al. Non-catalytic conversion of chitin into Chromogen Ⅰ in high-temperature water[J]. International Journal of Biological Macromolecules, 2019, 136: 994-999. |
88 | 杨棕楠, 朱聪, 朱丹丹, 等. D-氨基葡萄糖合成3-苯甲酰胺基-5-乙酰基呋喃[J]. 合成化学, 2021, 29(1): 81-84. |
Yang Z N, Zhu C, Zhu D D, et al. Synthesis of 3-benzamide-5-acetyl furan from D-glucosamine[J]. Chinese Journal of Synthetic Chemistry, 2021, 29(1): 81-84. | |
89 | Korampattu L, Ghosh N, Dhepe P L. Shell waste valorization to chemicals: methods and progress[J]. Green Chemistry, 2024, 26(10): 5601-5634. |
90 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
91 | Bobbink F D, Zhang J G, Pierson Y, et al. Conversion of chitin derived N-acetyl-D-glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water[J]. Green Chemistry, 2015, 17(2): 1024-1031. |
92 | Zheng Y F, Lu L J, Chen W, et al. Towards the efficient catalytic valorization of chitin to N-acylethanolamine over Ni/CeO2 catalyst: exploring the shape-selective reactivity[J]. Catalysts, 2022, 12(5): 460. |
93 | Techikawara K, Kobayashi H, Fukuoka A. Conversion of N-acetylglucosamine to protected amino acid over Ru/C catalyst[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12411-12418. |
94 | Xie S Q, Jia C H, Go Ong S S, et al. A shortcut route to close nitrogen cycle: bio-based amines production via selective deoxygenation of chitin monomers over Ru/C in acidic solutions[J]. iScience, 2020, 23(5): 101096. |
95 | 王勤, 胡新良. 天然甲壳素热裂解制备精细化学品的研究[J]. 华中师范大学学报(自然科学版), 2016, 50(2): 243-248. |
Wang Q, Hu X L. Production of fine chemicals from chitin by flash pyrolysis[J]. Journal of Central China Normal University (Natural Sciences), 2016, 50(2): 243-248. | |
96 | Kobayashi H, Techikawara K, Fukuoka A. Hydrolytic hydrogenation of chitin to amino sugar alcohol[J]. Green Chemistry, 2017, 19(14): 3350-3356. |
97 | Sagawa T, Kobayashi H, Murata C, et al. Catalytic conversion of a chitin-derived sugar alcohol to an amide-containing isosorbide analog[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14883-14888. |
98 | Yang C, Sagawa T, Fukuoka A, et al. Characteristic activity of phosphorous acid in the dehydration condensation of a chitin-derived nitrogen-containing sugar alcohol[J]. Green Chemistry, 2021, 23(18): 7228-7234. |
[1] | Yi ZHONG, Shiyu ZHOU, Lianchao JIU, Yuxiao LI, Haojiang WU, Zhiyong ZHOU. Research progress on direct remediation and regeneration of cathode materials from spent lithium iron phosphate batteries [J]. CIESC Journal, 2024, 75(S1): 1-13. |
[2] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
[3] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
[4] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[5] | Dengxue XING, Liang ZHANG, Wenqiang LI, Jianhua LIANG, Lei QIN, Genlin ZHANG, Chun LI. Synthesis of 18α-glycyrrhizic acid by yeast cells [J]. CIESC Journal, 2024, 75(9): 3266-3276. |
[6] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[7] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
[8] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[9] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
[10] | Hongrui LI, Chunxi HUANG, Xiaodong HONG, Zuwei LIAO, Jingdai WANG, Yongrong YANG. An adaptive variable-step homotopy-based algorithm for process simulation with cyclic streams [J]. CIESC Journal, 2024, 75(7): 2604-2612. |
[11] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[12] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
[13] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[14] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[15] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 195
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||