CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2604-2612.DOI: 10.11949/0438-1157.20231400
• Process system engineering • Previous Articles Next Articles
Hongrui LI1(), Chunxi HUANG1, Xiaodong HONG2(
), Zuwei LIAO1(
), Jingdai WANG1, Yongrong YANG1
Received:
2023-12-30
Revised:
2024-03-19
Online:
2024-08-09
Published:
2024-07-25
Contact:
Xiaodong HONG, Zuwei LIAO
李洪瑞1(), 黄纯西1, 洪小东2(
), 廖祖维1(
), 王靖岱1, 阳永荣1
通讯作者:
洪小东,廖祖维
作者简介:
李洪瑞(2001—),男,硕士研究生,22328110@zju.edu.cn
基金资助:
CLC Number:
Hongrui LI, Chunxi HUANG, Xiaodong HONG, Zuwei LIAO, Jingdai WANG, Yongrong YANG. An adaptive variable-step homotopy-based algorithm for process simulation with cyclic streams[J]. CIESC Journal, 2024, 75(7): 2604-2612.
李洪瑞, 黄纯西, 洪小东, 廖祖维, 王靖岱, 阳永荣. 基于自适应变步长同伦法的循环流程收敛算法[J]. 化工学报, 2024, 75(7): 2604-2612.
模块 | 参数 | 初始值 | |
---|---|---|---|
反应器1 | 催化剂进料流率/(kg/h) | 0.428 | |
乙烯进料流率/(kg/h) | 5558 | ||
氢气进料流率/(kg/h) | 1.159 | ||
正己烷进料流率/(kg/h) | 17263 | ||
反应器温度/℃ | 87 | ||
反应器压力/bar | 8.19 | ||
反应器2 | 乙烯进料流率/(kg/h) | 4453 | |
氢气进料流率/(kg/h) | 0.033 | ||
正己烷进料流率/(kg/h) | 9172 | ||
反应器温度/℃ | 87 | ||
反应器压力/bar | 5.17 | ||
流股 | 氢气流率/(kmol/h) | 乙烯流率/(kmol/h) | 正己烷流率/(kmol/h) |
R-Vap1 | 100 | 100 | 100 |
R-Vap2 | 100 | 100 | 100 |
Table 1 Reactor feed parameters and initial values of tear stream
模块 | 参数 | 初始值 | |
---|---|---|---|
反应器1 | 催化剂进料流率/(kg/h) | 0.428 | |
乙烯进料流率/(kg/h) | 5558 | ||
氢气进料流率/(kg/h) | 1.159 | ||
正己烷进料流率/(kg/h) | 17263 | ||
反应器温度/℃ | 87 | ||
反应器压力/bar | 8.19 | ||
反应器2 | 乙烯进料流率/(kg/h) | 4453 | |
氢气进料流率/(kg/h) | 0.033 | ||
正己烷进料流率/(kg/h) | 9172 | ||
反应器温度/℃ | 87 | ||
反应器压力/bar | 5.17 | ||
流股 | 氢气流率/(kmol/h) | 乙烯流率/(kmol/h) | 正己烷流率/(kmol/h) |
R-Vap1 | 100 | 100 | 100 |
R-Vap2 | 100 | 100 | 100 |
算法 | 同伦辅助函数 | 案例A | 案例B | ||||
---|---|---|---|---|---|---|---|
结果 | 流程运行次数 | 计算时间/s | 结果 | 流程运行次数 | 计算时间/s | ||
直接迭代法 | — | 失败 | — | — | 失败 | — | — |
Wegstein法 | — | 收敛 | 34 | 6 | 失败 | — | — |
Broyden法 | — | 收敛 | 28 | 5 | 失败 | — | — |
牛顿法 | — | 失败 | — | — | 失败 | — | — |
同伦-直接迭代法 | 牛顿同伦 | 失败 | — | — | 失败 | — | — |
定点同伦 | 失败 | — | — | 失败 | — | — | |
同伦-Wegstein法 | 牛顿同伦 | 收敛 | 74 | 35 | 收敛 | 792 | 374 |
定点同伦 | 收敛 | 89 | 42 | 收敛 | 841 | 496 | |
同伦-Broyden法 | 牛顿同伦 | 收敛 | 54 | 26 | 收敛 | 1577 | 874 |
定点同伦 | 收敛 | 58 | 28 | 收敛 | 1366 | 712 | |
同伦-牛顿法 | 牛顿同伦 | 收敛 | 279 | 143 | 收敛 | 2711 | 1349 |
定点同伦 | 收敛 | 341 | 166 | 失败 | — | — |
Table 2 Comparison of convergence performance of various algorithms on cases A and B
算法 | 同伦辅助函数 | 案例A | 案例B | ||||
---|---|---|---|---|---|---|---|
结果 | 流程运行次数 | 计算时间/s | 结果 | 流程运行次数 | 计算时间/s | ||
直接迭代法 | — | 失败 | — | — | 失败 | — | — |
Wegstein法 | — | 收敛 | 34 | 6 | 失败 | — | — |
Broyden法 | — | 收敛 | 28 | 5 | 失败 | — | — |
牛顿法 | — | 失败 | — | — | 失败 | — | — |
同伦-直接迭代法 | 牛顿同伦 | 失败 | — | — | 失败 | — | — |
定点同伦 | 失败 | — | — | 失败 | — | — | |
同伦-Wegstein法 | 牛顿同伦 | 收敛 | 74 | 35 | 收敛 | 792 | 374 |
定点同伦 | 收敛 | 89 | 42 | 收敛 | 841 | 496 | |
同伦-Broyden法 | 牛顿同伦 | 收敛 | 54 | 26 | 收敛 | 1577 | 874 |
定点同伦 | 收敛 | 58 | 28 | 收敛 | 1366 | 712 | |
同伦-牛顿法 | 牛顿同伦 | 收敛 | 279 | 143 | 收敛 | 2711 | 1349 |
定点同伦 | 收敛 | 341 | 166 | 失败 | — | — |
组分 | 案例A | 案例B | ||
---|---|---|---|---|
R-Vap1 | R-Vap2 | R-Vap1 | R-Vap2 | |
氢气/(kmol/h) | 41.450 | 19.726 | 69.114 | 52.680 |
乙烯/(kmol/h) | 592.344 | 540.521 | 987.703 | 1445.184 |
正己烷/(kmol/h) | 199.157 | 321.754 | 332.086 | 860.249 |
Table 3 Result of tear streams for cases A and B
组分 | 案例A | 案例B | ||
---|---|---|---|---|
R-Vap1 | R-Vap2 | R-Vap1 | R-Vap2 | |
氢气/(kmol/h) | 41.450 | 19.726 | 69.114 | 52.680 |
乙烯/(kmol/h) | 592.344 | 540.521 | 987.703 | 1445.184 |
正己烷/(kmol/h) | 199.157 | 321.754 | 332.086 | 860.249 |
算法 | 同伦辅助函数 | 案例C | 案例D | ||||||
---|---|---|---|---|---|---|---|---|---|
收敛工况 个数 | 收敛案例 百分比/% | 平均流程 运行次数 | 平均计算 时间/s | 收敛工况 个数 | 收敛案例 百分比/% | 平均流程 运行次数 | 平均计算 时间/s | ||
直接迭代法 | — | 0 | 0 | — | — | 0 | 0 | — | — |
Wegstein法 | — | 7 | 13 | 46 | 8 | 10 | 18 | 42 | 7 |
Broyden法 | — | 7 | 13 | 41 | 7 | 12 | 21 | 39 | 7 |
牛顿法 | — | 4 | 7 | 235 | 43 | 6 | 11 | 192 | 36 |
同伦-直接迭代法 | 牛顿同伦 | 0 | 0 | — | — | 0 | 0 | — | — |
定点同伦 | 0 | 0 | — | — | 0 | 0 | — | — | |
同伦-Wegstein法 | 牛顿同伦 | 37 | 66 | 915 | 424 | 41 | 73 | 762 | 369 |
定点同伦 | 35 | 63 | 976 | 488 | 45 | 80 | 797 | 391 | |
同伦-Broyden法 | 牛顿同伦 | 45 | 80 | 1469 | 746 | 49 | 88 | 1225 | 641 |
定点同伦 | 42 | 75 | 1539 | 796 | 47 | 84 | 1376 | 721 | |
同伦-牛顿法 | 牛顿同伦 | 34 | 61 | 3022 | 1579 | 38 | 68 | 2451 | 1365 |
定点同伦 | 32 | 57 | 2844 | 1464 | 33 | 59 | 2274 | 1217 |
Table 4 Comparison of convergence performance of various algorithms on cases C and D
算法 | 同伦辅助函数 | 案例C | 案例D | ||||||
---|---|---|---|---|---|---|---|---|---|
收敛工况 个数 | 收敛案例 百分比/% | 平均流程 运行次数 | 平均计算 时间/s | 收敛工况 个数 | 收敛案例 百分比/% | 平均流程 运行次数 | 平均计算 时间/s | ||
直接迭代法 | — | 0 | 0 | — | — | 0 | 0 | — | — |
Wegstein法 | — | 7 | 13 | 46 | 8 | 10 | 18 | 42 | 7 |
Broyden法 | — | 7 | 13 | 41 | 7 | 12 | 21 | 39 | 7 |
牛顿法 | — | 4 | 7 | 235 | 43 | 6 | 11 | 192 | 36 |
同伦-直接迭代法 | 牛顿同伦 | 0 | 0 | — | — | 0 | 0 | — | — |
定点同伦 | 0 | 0 | — | — | 0 | 0 | — | — | |
同伦-Wegstein法 | 牛顿同伦 | 37 | 66 | 915 | 424 | 41 | 73 | 762 | 369 |
定点同伦 | 35 | 63 | 976 | 488 | 45 | 80 | 797 | 391 | |
同伦-Broyden法 | 牛顿同伦 | 45 | 80 | 1469 | 746 | 49 | 88 | 1225 | 641 |
定点同伦 | 42 | 75 | 1539 | 796 | 47 | 84 | 1376 | 721 | |
同伦-牛顿法 | 牛顿同伦 | 34 | 61 | 3022 | 1579 | 38 | 68 | 2451 | 1365 |
定点同伦 | 32 | 57 | 2844 | 1464 | 33 | 59 | 2274 | 1217 |
1 | Pistikopoulos E N, Barbosa-Povoa A, Lee J H, et al. Process systems engineering—the generation next?[J]. Computers & Chemical Engineering, 2021, 147: 107252. |
2 | Sinnott R, Towler G. Chemical Engineering Design[M]. Amsterdam: Elsevier, 2020. |
3 | Al-Malah K I M. Aspen Plus®: Chemical Engineering Applications[M]. Hoboken, NJ, USA: John Wiley & Sons Inc., 2016. |
4 | Haydary J. Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications[M]. Hoboken, NJ, USA:John Wiley & Sons Inc., 2018. |
5 | Song J Y, Jiang Z Y, Ding Y L. Analysis and evaluation of material flow in different steel production processes by gPROMS-based simulation[J]. Energy Procedia, 2019, 158: 4218-4223. |
6 | Georgakis C, Chin S T, Wang Z, et al. Data-driven optimization of an industrial batch polymerization process using the design of dynamic experiments methodology[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14868-14880. |
7 | Burre J, Kabatnik C, Al-Khatib M, et al. Global flowsheet optimization for reductive dimethoxymethane production using data-driven thermodynamic models[J]. Computers & Chemical Engineering, 2022, 162: 107806. |
8 | Schweidtmann A M, Zhang D D, von Stosch M. A review and perspective on hybrid modeling methodologies[J]. Digital Chemical Engineering, 2024, 10: 100136. |
9 | 邱彤, 戴一阳, 赵永臣. 化工过程模拟——理论与实践[M]. 北京: 化学工业出版社, 2020. |
Qiu T, Dai Y Y, Zhao Y C. Chemical Process Simulation: Theory and Practice[M]. Beijing: Chemical Industry Press, 2020. | |
10 | Biegler L T, Hughes R R. Feasible path optimization with sequential modular simulators[J]. Computers & Chemical Engineering, 1985, 9(4): 379-394. |
11 | Kang Y Y, Luo Y Q, Yuan X G. Recent progress on equation-oriented optimization of complex chemical processes[J]. Chinese Journal of Chemical Engineering, 2022, 41: 162-169. |
12 | Jiménez-Islas H, Martínez-González G M, Navarrete-Bolaños J L, et al. Nonlinear homotopic continuation methods: a chemical engineering perspective review[J]. Industrial & Engineering Chemistry Research, 2013, 52(42): 14729-14742. |
13 | Bonilla J, Diehl M, Logist F, et al. A convexity-based homotopy method for nonlinear optimization in model predictive control[J]. Optimal Control Applications and Methods, 2010, 31(5): 393-414. |
14 | Asadi J, Jalali Farahani F. Optimization of dimethyl ether production process based on sustainability criteria using a homotopy continuation method[J]. Computers & Chemical Engineering, 2018, 115: 161-178. |
15 | 胡晖. 同伦新算法在精馏模拟中的应用[D]. 天津: 天津大学, 2004. |
Hu H. Application of new homotopy algorithm in the field of distillation simulation[D]. Tianjin: Tianjin University, 2004. | |
16 | Chen W, Zhu L, Chen X, et al. Sensitivity embedded homotopy-based backtracking method for chemical process simulation[C]//2013 10th IEEE International Conference on Control and Automation (ICCA). Hangzhou, China: IEEE, 2013: 1274-1277. |
17 | Steffen V, Silva E A. Numerical methods and initial estimates for the simulation of steady-state reactive distillation columns with an algorithm based on tearing equations methodology[J]. Thermal Science and Engineering Progress, 2018, 6: 1-13. |
18 | Zhu L Y, Chen Z Q, Chen X, et al. Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method[J]. Separation and Purification Technology, 2009, 67(3): 262-270. |
19 | 祝铃钰, 陈智强, 陈曦, 等. 大规模变工况流程模拟的回溯同伦法[J]. 高校化学工程学报, 2009, 23(4): 690-695. |
Zhu L Y, Chen Z Q, Chen X, et al. Homotopy based backtracking method for large-scale process simulations with load variation[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(4): 690-695. | |
20 | Chen W F, Shao Z J, Zhu L Y, et al. Homotopy with second-order correction based backtracking method for chemical process simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 15080-15088. |
21 | Jalali F, Seader J D, Khaleghi S. Global solution approaches in equilibrium and stability analysis using homotopy continuation in the complex domain[J]. Computers & Chemical Engineering, 2008, 32(10): 2333-2345. |
22 | Malinen I, Kangas J, Tanskanen J. A new Newton homotopy based method for the robust determination of all the stationary points of the tangent plane distance function[J]. Chemical Engineering Science, 2012, 84: 266-275. |
23 | Malinen I, Kangas J, Ahola J, et al. A new homotopy-based strategy for the robust determination of all the feasible solutions for CSTR systems[J]. Periodica Polytechnica Chemical Engineering, 2016, 60(1): 8-23. |
24 | Malinen I, Tanskanen J. Modified bounded homotopies to enable a narrow bounding zone[J]. Chemical Engineering Science, 2008, 63(13): 3419-3430. |
25 | Paloschi J R. Bounded homotopies to solve systems of algebraic nonlinear equation[J].An International Journal of Computer Application in Chemical Engineering, 1995, 19(12): 1243-1254. |
26 | Wang Y, Topputo F. A homotopy method based on theory of functional connections[EB/OL]. 2019.. |
27 | de la Luz López-González M, Quemada-Villagómez M L, Martinez-González G M, et al. A novel predictive homotopic path tracking algorithm to solve non-linear algebraic equations[J]. The Canadian Journal of Chemical Engineering, 2023, 101(6): 3382-3408. |
28 | Rahimian S K, Jalali F, Seader J D, et al. A new homotopy for seeking all real roots of a nonlinear equation[J]. Computers & Chemical Engineering, 2011, 35(3): 403-411. |
29 | Rahimian S K, Jalali F, Seader J D, et al. A robust homotopy continuation method for seeking all real roots of unconstrained systems of nonlinear algebraic and transcendental equations[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 8892-8900. |
30 | Kang X Q, Cheng H Y, Tong L W, et al. Development of a bifurcation analysis approach based on gPROMS platform[J]. Chinese Journal of Chemical Engineering, 2016, 24(12): 1742-1749. |
31 | Fan X Q, Sun J Y, Wang J D, et al. Stability analysis of ethylene polymerization in a liquid-containing gas-solid fluidized bed reactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(16): 5616-5629. |
32 | Fan X Q, Sun J Y, Yang Y, et al. Thermal-stability analysis of ethylene-polymerization fluidized-bed reactors under condensed-mode operation through a TPM-PBM integrated model[J]. Industrial & Engineering Chemistry Research, 2019, 58(22): 9486-9499. |
33 | Khare N P, Seavey K C, Liu Y A, et al. Steady-state and dynamic modeling of commercial slurry high-density polyethylene (HDPE) processes[J]. Industrial and Engineering Chemistry Research, 2002, 41(23): 5601-5618. |
[1] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[2] | Zhimin HAN, Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel [J]. CIESC Journal, 2024, 75(7): 2486-2496. |
[3] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
[4] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[5] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[6] | Fei LU, Bona LU, Guangwen XU. Analysis of criteria for ideal flow patterns in gas-solid micro fluidized bed reaction analyzer [J]. CIESC Journal, 2024, 75(6): 2201-2213. |
[7] | Bin HUANG, Shengjie FENG, Cheng FU, Wei ZHANG. Numerical study on spreading characteristics of droplet impact on single fiber [J]. CIESC Journal, 2024, 75(6): 2233-2242. |
[8] | Zongwei HUO, Yabin NIU, Yanqiu PAN. Behavior of high viscosity oil droplets in oil-water membrane separation and its influencing factors [J]. CIESC Journal, 2024, 75(6): 2262-2273. |
[9] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[10] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[11] | Zhihong HUANG, Li ZHOU, Shiyang CHAI, Xu JI. Integrating optimization of hydrogenation units in multi-period hydrogen network [J]. CIESC Journal, 2024, 75(5): 1951-1965. |
[12] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[13] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[14] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[15] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 235
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||