CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2198-2208.DOI: 10.11949/0438-1157.20241238
• Separation engineering • Previous Articles Next Articles
Zhichao XU1(
), Zhendong YU1, Haofeng WU1, Peiwen WU1,2(
), Hongxiang WU3, Yanhong CHAO3, Wenshuai ZHU1,2(
), Zhichang LIU1, Chunming XU1
Received:2024-11-01
Revised:2025-02-24
Online:2025-06-13
Published:2025-05-25
Contact:
Peiwen WU, Wenshuai ZHU
徐智超1(
), 俞镇东1, 吴昊峰1, 吴沛文1,2(
), 武洪翔3, 巢艳红3, 朱文帅1,2(
), 刘植昌1, 徐春明1
通讯作者:
吴沛文,朱文帅
作者简介:徐智超(2000—),男,硕士研究生,xzhichao2022@163.com
基金资助:CLC Number:
Zhichao XU, Zhendong YU, Haofeng WU, Peiwen WU, Hongxiang WU, Yanhong CHAO, Wenshuai ZHU, Zhichang LIU, Chunming XU. Preparation of acid-rich 13X molecular sieve and its ultra-deep adsorption removal of mercaptan in biodiesel[J]. CIESC Journal, 2025, 76(5): 2198-2208.
徐智超, 俞镇东, 吴昊峰, 吴沛文, 武洪翔, 巢艳红, 朱文帅, 刘植昌, 徐春明. 富酸位13X分子筛的制备及其超深度吸附脱除生物柴油中硫醇[J]. 化工学报, 2025, 76(5): 2198-2208.
Add to citation manager EndNote|Ris|BibTeX
| 吸附剂 | 比表面积/ (m2·g-1) | 孔径/nm | 孔体积/ (cm3·g-1) | 元素含量/%(质量分数) | n(SiO2)/ n(Al2O3) | |||
|---|---|---|---|---|---|---|---|---|
| Si | Al | Na | Ce | |||||
| 13X | 702 | 0.95 | 0.27 | 18.92 | 17.72 | 18.65 | — | 2.05 |
| Ce-13X | 695 | 1.03 | 0.28 | 18.99 | 17.24 | 9.38 | 10.85 | 2.12 |
Table 1 Pore structure parameters and elemental analysis of adsorbents
| 吸附剂 | 比表面积/ (m2·g-1) | 孔径/nm | 孔体积/ (cm3·g-1) | 元素含量/%(质量分数) | n(SiO2)/ n(Al2O3) | |||
|---|---|---|---|---|---|---|---|---|
| Si | Al | Na | Ce | |||||
| 13X | 702 | 0.95 | 0.27 | 18.92 | 17.72 | 18.65 | — | 2.05 |
| Ce-13X | 695 | 1.03 | 0.28 | 18.99 | 17.24 | 9.38 | 10.85 | 2.12 |
| 吸附剂 | 脱附温度/℃ | 酸量/(μmol·g-1) | |
|---|---|---|---|
| B酸 | L酸 | ||
| 13X | 200 | — | 196.4 |
| 350 | — | 153.1 | |
| Ce-13X | 200 | 318.5 | 151.2 |
| 350 | 324.1 | 54.5 | |
Table 2 Distribution of Brønsted and Lewis acidity in the adsorbents
| 吸附剂 | 脱附温度/℃ | 酸量/(μmol·g-1) | |
|---|---|---|---|
| B酸 | L酸 | ||
| 13X | 200 | — | 196.4 |
| 350 | — | 153.1 | |
| Ce-13X | 200 | 318.5 | 151.2 |
| 350 | 324.1 | 54.5 | |
| 温度/℃ | qe,exp/(mg·g-1) | 准一级动力学 | 准二级动力学 | ||||
|---|---|---|---|---|---|---|---|
| k1/min-1 | qe1,cal/(mg·g-1) | R2 | k2/(g·mg-1·min-1) | qe2,cal/(mg·g-1) | R2 | ||
| 30 | 0.69 | 0.0213 | 0.49 | 0.9483 | 0.0657 | 0.76 | 0.9980 |
| 40 | 0.70 | 0.0324 | 0.19 | 0.9780 | 0.3961 | 0.71 | 0.9999 |
Table 3 Fitting parameters of Ce-13X adsorption kinetics
| 温度/℃ | qe,exp/(mg·g-1) | 准一级动力学 | 准二级动力学 | ||||
|---|---|---|---|---|---|---|---|
| k1/min-1 | qe1,cal/(mg·g-1) | R2 | k2/(g·mg-1·min-1) | qe2,cal/(mg·g-1) | R2 | ||
| 30 | 0.69 | 0.0213 | 0.49 | 0.9483 | 0.0657 | 0.76 | 0.9980 |
| 40 | 0.70 | 0.0324 | 0.19 | 0.9780 | 0.3961 | 0.71 | 0.9999 |
| 阶段 | k/(mg·g-1·min-0.5) | C/(mg·g-1) | R2 |
|---|---|---|---|
| 第一阶段 | 0.0721 | 0.0399 | 0.9592 |
| 第二阶段 | 0.0139 | 0.4794 | 0.9633 |
| 第三阶段 | — | 0.6936 | — |
Table 4 Fitting parameters of the intraparticle diffusion model
| 阶段 | k/(mg·g-1·min-0.5) | C/(mg·g-1) | R2 |
|---|---|---|---|
| 第一阶段 | 0.0721 | 0.0399 | 0.9592 |
| 第二阶段 | 0.0139 | 0.4794 | 0.9633 |
| 第三阶段 | — | 0.6936 | — |
| 吸附剂 | qm/(mg·g-1) | Langmuir吸附等温线 | Freundlich吸附等温线 | |||
|---|---|---|---|---|---|---|
| KL/(L·mg-1) | R2 | KF/(mg·g-1)(L·mg-1)1/n | 1/n | R2 | ||
| Ce-13X | 7.73 | 0.0026 | 0.9669 | 0.1057 | 0.5995 | 0.9904 |
Table 5 Langmuir and Freundlich adsorption isotherm parameters of Ce-13X
| 吸附剂 | qm/(mg·g-1) | Langmuir吸附等温线 | Freundlich吸附等温线 | |||
|---|---|---|---|---|---|---|
| KL/(L·mg-1) | R2 | KF/(mg·g-1)(L·mg-1)1/n | 1/n | R2 | ||
| Ce-13X | 7.73 | 0.0026 | 0.9669 | 0.1057 | 0.5995 | 0.9904 |
| ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(J·mol-1·K-1) | R2 | |||
|---|---|---|---|---|---|---|
| 303.15 K | 313.15 K | 323.15 K | 333.15 K | |||
| -9.9114 | -9.0445 | -7.8336 | -7.3374 | -36.9286 | -89.2170 | 0.9859 |
Table 6 Adsorption thermodynamic parameters of Ce-13X at different temperatures
| ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(J·mol-1·K-1) | R2 | |||
|---|---|---|---|---|---|---|
| 303.15 K | 313.15 K | 323.15 K | 333.15 K | |||
| -9.9114 | -9.0445 | -7.8336 | -7.3374 | -36.9286 | -89.2170 | 0.9859 |
| 1 | Jiang H B, Shao Z Y, Chen W B, et al. Study on diesel hydrotreating kinetics and the synergistic effect of CoMo and NiMo catalysts[J]. Energy & Fuels, 2024, 38(7): 6314-6324. |
| 2 | Oh P P, Lau H L N, Chen J, et al. A review on conventional technologies and emerging process intensification (PI) methods for biodiesel production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5131-5145. |
| 3 | 黄宽, 马永德, 蔡镇平, 等. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
| Huang K, Ma Y D, Cai Z P, et al. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel[J]. CIESC Journal, 2023, 74(1): 380-396. | |
| 4 | Li Y M, Xu H, Li Z F, et al. Catalytic methanotreating of vegetable oil: a pathway to second-generation biodiesel[J]. Fuel, 2022, 311: 122504. |
| 5 | Haruna A, Merican Aljunid Merican Z, Gani Musa S, et al. Sulfur removal technologies from fuel oil for safe and sustainable environment[J]. Fuel, 2022, 329: 125370. |
| 6 | Xiong J, Luo J, Di J, et al. Macroscopic 3D boron nitride monolith for efficient adsorptive desulfurization[J]. Fuel, 2020, 261: 116448. |
| 7 | Wang Q, Zhang T, Zhang S L, et al. Extractive desulfurization of fuels using trialkylamine-based protic ionic liquids[J]. Separation and Purification Technology, 2020, 231: 115923. |
| 8 | Lin Y H, Feng L, Li X H, et al. Study on ultrasound-assisted oxidative desulfurization for crude oil[J]. Ultrasonics Sonochemistry, 2020, 63: 104946. |
| 9 | Umar Hussain M, Kainat K, Nawaz H, et al. SERS characterization of biochemical changes associated with biodesulfurization of dibenzothiophene using Gordonia sp. HS126-4N[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 320: 124534. |
| 10 | Lee K X, Valla J A. Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review[J]. Reaction Chemistry & Engineering, 2019, 4(8): 1357-1386. |
| 11 | Danmaliki G I, Saleh T A, Shamsuddeen A A. Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon[J]. Chemical Engineering Journal, 2017, 313: 993-1003. |
| 12 | Yoosuk B, Silajan A, Prasassarakich P. Deep adsorptive desulfurization over ion-exchanged zeolites: individual and simultaneous effect of aromatic and nitrogen compounds[J]. Journal of Cleaner Production, 2020, 248: 119291. |
| 13 | Hamad K I, Humadi J I, Abdulkareem H A, et al. Efficient immobilization of acids into activated carbon for high durability and continuous desulfurization of diesel fuel[J]. Energy Science & Engineering, 2023, 11(10): 3662-3679. |
| 14 | Zhang C Y, Zhang X W, Tao Z P, et al. Defect engineering and post-synthetic reduction of Cu based metal-organic frameworks towards efficient adsorption desulfurization[J]. Chemical Engineering Journal, 2023, 455: 140487. |
| 15 | Neubauer R, Husmann M, Weinlaender C, et al. Acid base interaction and its influence on the adsorption kinetics and selectivity order of aromatic sulfur heterocycles adsorbing on Ag-Al2O3 [J]. Chemical Engineering Journal, 2017, 309: 840-849. |
| 16 | Liu X J, Yi D Z, Cui Y Y, et al. Adsorption desulfurization and weak competitive behavior from 1-hexene over cesium-exchanged Y zeolites (CsY)[J]. Journal of Energy Chemistry, 2018, 27(1): 271-277. |
| 17 | Yang R T, Hernández-Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81. |
| 18 | Cha Y H, Lee K B. Examining the impact of different anions in Cu precursors on sulfur adsorption through zeolites with Cu ion-exchange[J]. Chemical Engineering Journal, 2023, 468: 143461. |
| 19 | Zu Y, Guan L J, Guo Z S, et al. Deep removal of thiophene and benzothiophene in low-sulfur fuels over the efficient CeAlSBA-15 adsorbent synthesized by sequential alumination and cerium incorporation[J]. Chemical Engineering Journal, 2021, 416: 127984. |
| 20 | Lee K X, Tsilomelekis G, Valla J A. Removal of benzothiophene and dibenzothiophene from hydrocarbon fuels using CuCe mesoporous Y zeolites in the presence of aromatics[J]. Applied Catalysis B: Environmental, 2018, 234: 130-142. |
| 21 | Lv J M, Ma Y L, Chang X, et al. Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X[J]. Chemical Engineering Journal, 2015, 273: 247-253. |
| 22 | Ren X Y, Cao J P, Zhao X Y, et al. Enhancement of aromatic products from catalytic fast pyrolysis of lignite over hierarchical HZSM-5 by piperidine-assisted desilication[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1792-1802. |
| 23 | Zeng Y B, Walker H, Zhu Q Z. Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles[J]. Journal of Hazardous Materials, 2017, 324: 605-616. |
| 24 | Vinodh R, Deviprasath C, Muralee Gopi C V V, et al. Novel 13X zeolite/PANI electrocatalyst for hydrogen and oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(53): 28337-28349. |
| 25 | Xiang X J, Guo T, Yin Y M, et al. High adsorption capacity Fe@13X zeolite for direct air CO2 capture[J]. Industrial & Engineering Chemistry Research, 2023, 62(12): 5420-5429. |
| 26 | Dashtpeyma G, Shabanian S R, Ahmadpour J, et al. The investigation of adsorption desulphurization performance using bimetallic CuCe and NiCe mesoporous Y zeolites: modification of Y zeolite by H4EDTA-NaOH sequential treatment[J]. Fuel Processing Technology, 2022, 235: 107379. |
| 27 | Zhu J C, Hu L F, He J, et al. Removal of ethyl mercaptan over Fe and Ce doped hexaniobate nanotubes[J]. Ceramics International, 2022, 48(17): 25267-25276. |
| 28 | Ma Y G, Zhang D Y, Sun H M, et al. Fe-Ce mixed oxides supported on carbon nanotubes for simultaneous removal of NO and Hg0 in flue gas[J]. Industrial & Engineering Chemistry Research, 2018, 57(9): 3187-3194. |
| 29 | Kumar K M, Mahendhiran M, Diaz M C, et al. Green synthesis of Ce3+ rich CeO2 nanoparticles and its antimicrobial studies[J]. Materials Letters, 2018, 214: 15-19. |
| 30 | Wei F J, Guo X Q, Liao J J, et al. Ultra-deep removal of thiophene in coke oven gas over Y zeolite: effect of acid modification on adsorption desulfurization[J]. Fuel Processing Technology, 2021, 213: 106632. |
| 31 | Luo J, Chao Y H, Tang Z Y, et al. Design of Lewis acid centers in bundlelike boron nitride for boosting adsorptive desulfurization performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13303-13312. |
| 32 | Wang J J, Li L H, Wen Z H, et al. Insight into the relationship between effective active sites and ultra-deep adsorption desulfurization performance of CuCeY with different Cu precursors[J]. Fuel Processing Technology, 2023, 250: 107930. |
| 33 | 张畅, 秦玉才, 高雄厚, 等. Ce改性对Y型分子筛酸性及其催化转化性能的调变机制[J]. 物理化学学报, 2015, 31(2): 344-352. |
| Zhang C, Qin Y C, Gao X H, et al. Modulation of the acidity and catalytic conversion properties of Y zeolites modified by cerium cations[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 344-352. | |
| 34 | Wang J J, Zhao J C, Wen Z H, et al. Regulating cerium location in Y zeolite and its influence on adsorptive desulfurization for thiophene in benzene[J]. Separation and Purification Technology, 2025, 353: 128517. |
| 35 | Luo J, Yan M, Ji H Y, et al. Three-dimensional Ce-MOFs-derived Ce@C-BN nanobundles for adsorptive desulfurization[J]. Applied Surface Science, 2022, 590: 152926. |
| [1] | Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs [J]. CIESC Journal, 2025, 76(5): 2313-2326. |
| [2] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [3] | Yue ZHANG, Jiaxin LIU, Jing MA, Yi LIU. Recent progress on metal-organic framework membranes towards uranium separation from seawater [J]. CIESC Journal, 2025, 76(5): 2087-2100. |
| [4] | Pengtao GUO, Ting WANG, Bo XUE, Yunpan YING, Dahuan LIU. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation [J]. CIESC Journal, 2025, 76(5): 2304-2312. |
| [5] | Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74 [J]. CIESC Journal, 2025, 76(5): 2279-2293. |
| [6] | Yan LI, Meili LEI, Xingang LI. Regulation strategy of sequential simulated moving bed structure based on separation performance [J]. CIESC Journal, 2025, 76(5): 2219-2229. |
| [7] | Yaqi BA, Tao WU, Andi DI, Anhui LU. Progress in porous carbons for efficient separation of gaseous light hydrocarbon [J]. CIESC Journal, 2025, 76(5): 2136-2157. |
| [8] | Peng TAN, Xuemei LI, Xiaoqin LIU, Linbing SUN. Study on magnetically responsive composite materials based on flexible MOFs and their propylene adsorption performance [J]. CIESC Journal, 2025, 76(5): 2230-2240. |
| [9] | Ruijie MA, Zixuan HUANG, Xueqian GUAN, Guangjin CHEN, Bei LIU. Efficient ethane and methane separation using ZIF-8/DMPU slurry [J]. CIESC Journal, 2025, 76(5): 2262-2269. |
| [10] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [11] | Junde ZHAO, Aiguo ZHOU, Yanlin CHEN, Jiale ZHENG, Tianshu GE. Current status of energy consumption of adsorption CO2 direct air capture [J]. CIESC Journal, 2025, 76(4): 1375-1390. |
| [12] | Zheng LI, Kaize ZHUANG, Dongjie ZHAO, Yanxing SONG, Gongming WANG. Design method of event-driven deep belief network soft-sensing model [J]. CIESC Journal, 2025, 76(4): 1693-1701. |
| [13] | Yihao JIN, Junxin LUO, Zhangmao HU, Wei WANG, Qian YIN. Experimental investigation on hydrophilic functionalized MgSO4/expanded vermiculite composites for water adsorption and heat storage [J]. CIESC Journal, 2025, 76(4): 1852-1862. |
| [14] | Tianzi CAI, Haifeng ZHANG, Haidan LIN, Zilong ZHANG, Pengyu ZHOU, Bolin WANG, Xiaonian LI. A density functional theory study on the sensing of dissolved gases CO and CO2 in transformer oil using boron-doped nitrogen-based graphene [J]. CIESC Journal, 2025, 76(4): 1841-1851. |
| [15] | Zhineng TAO, Tong QIU, Baoguo WANG. Steady-state modeling on hydrogen production by anion exchange membrane water electrolysis [J]. CIESC Journal, 2025, 76(4): 1711-1721. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||