CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1841-1851.DOI: 10.11949/0438-1157.20240693
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Tianzi CAI1(), Haifeng ZHANG1, Haidan LIN2, Zilong ZHANG1, Pengyu ZHOU1, Bolin WANG1(
), Xiaonian LI3(
)
Received:
2024-06-21
Revised:
2024-10-24
Online:
2025-05-12
Published:
2025-04-25
Contact:
Bolin WANG, Xiaonian LI
蔡天姿1(), 张海丰1, 林海丹2, 张子龙1, 周鹏宇1, 王柏林1(
), 李小年3(
)
通讯作者:
王柏林,李小年
作者简介:
蔡天姿(1999—),女,硕士研究生,czltz2584@163.com
基金资助:
CLC Number:
Tianzi CAI, Haifeng ZHANG, Haidan LIN, Zilong ZHANG, Pengyu ZHOU, Bolin WANG, Xiaonian LI. A density functional theory study on the sensing of dissolved gases CO and CO2 in transformer oil using boron-doped nitrogen-based graphene[J]. CIESC Journal, 2025, 76(4): 1841-1851.
蔡天姿, 张海丰, 林海丹, 张子龙, 周鹏宇, 王柏林, 李小年. 硼掺杂氮基石墨烯检测变压器油中溶解气体CO和CO2的密度泛函理论研究[J]. 化工学报, 2025, 76(4): 1841-1851.
Fig.3 Optimal configuration diagrams and adsorption energies of CO and CO2 gases on various heteroatom-doped graphene nanoribbon systems (purple: C; yellow: N; green: B; red: O; white: H)
Structure | Bond length/Å | D/Å | ||||
---|---|---|---|---|---|---|
C—C | B—C | B—N | N—C | CO | CO2 | |
G | 1.421 | |||||
N-G/G | 1.429 | 1.406 | 3.229(O—N) | 3.102(O—N) | ||
BN-G/G | 1.428 | 1.498 | 1.441 | 1.410 | 3.447(O—B) | 3.672(O—B) |
N-P/G | 1.445 | 1.364 | 3.695(O—N) | 3.621(O—N) | ||
BN-P/G | 1.464 | 1.538 | 1.416 | 1.346 | 3.767(O—B) | 3.632(O—B) |
N-O/G | 1.436 | 1.398 | 3.677(O—N) | 3.766(O—N) | ||
BN-O/G | 1.446 | 1.476 | 1.357 | 1.402 | 3.440(O—B) | 3.475(O—B) |
Table 1 Bond lengths and distances of CO and CO2 gases adsorbed onto the surface of various heteroatom-doped graphene nanoribbon systems
Structure | Bond length/Å | D/Å | ||||
---|---|---|---|---|---|---|
C—C | B—C | B—N | N—C | CO | CO2 | |
G | 1.421 | |||||
N-G/G | 1.429 | 1.406 | 3.229(O—N) | 3.102(O—N) | ||
BN-G/G | 1.428 | 1.498 | 1.441 | 1.410 | 3.447(O—B) | 3.672(O—B) |
N-P/G | 1.445 | 1.364 | 3.695(O—N) | 3.621(O—N) | ||
BN-P/G | 1.464 | 1.538 | 1.416 | 1.346 | 3.767(O—B) | 3.632(O—B) |
N-O/G | 1.436 | 1.398 | 3.677(O—N) | 3.766(O—N) | ||
BN-O/G | 1.446 | 1.476 | 1.357 | 1.402 | 3.440(O—B) | 3.475(O—B) |
Structure | Transfer electron/e | ||||||
---|---|---|---|---|---|---|---|
N | B | C | O1 | O2 | CO | CO2 | |
CO/BN-G/G | -1.498 | +1.885 | +1.059 | -1.072 | -0.013 | ||
CO/BN-O/G | -1.467 | +1.913 | +1.073 | -1.085 | -0.012 | ||
CO2/BN-G/G | -1.490 | +1.881 | +2.076 | -1.060 | -1.023 | -0.009 | |
CO2/BN-O/G | -1.480 | +1.948 | +2.087 | -1.050 | -1.047 | -0.008 |
Table 2 Charge transfer quantities for CO and CO2 adsorption on BN-G/G and BN-O/G
Structure | Transfer electron/e | ||||||
---|---|---|---|---|---|---|---|
N | B | C | O1 | O2 | CO | CO2 | |
CO/BN-G/G | -1.498 | +1.885 | +1.059 | -1.072 | -0.013 | ||
CO/BN-O/G | -1.467 | +1.913 | +1.073 | -1.085 | -0.012 | ||
CO2/BN-G/G | -1.490 | +1.881 | +2.076 | -1.060 | -1.023 | -0.009 | |
CO2/BN-O/G | -1.480 | +1.948 | +2.087 | -1.050 | -1.047 | -0.008 |
1 | Ni J M, Yang B Q, Jia F F, et al. Theoretical investigation of the sensing mechanism of the pure graphene and Al,B,N,P doped mono-vacancy graphene-based methane[J]. Chemical Physics Letters, 2018, 710: 221-225. |
2 | Skorupska M, Ilnicka A, Lukaszewicz J P. Modified graphene foam as a high-performance catalyst for oxygen reduction reaction[J]. RSC Advances, 2023, 13(36): 25437-25442. |
3 | Gui Y G, Xu L N, Ding Z Y, et al. Co, Rh decorated GaNNTs for online monitoring of characteristic decomposition products in oil-immersed transformer[J]. Applied Surface Science, 2021, 561: 150072. |
4 | Zhang J, Wang Y Q, Wei Z, et al. Ni-decorated ZnO monolayer for sensing CO and HCHO in dry-type transformers: a first-principles theory[J]. Chemosensors, 2022, 10(8): 307. |
5 | Yuan T, Fu C, Gong Y J, et al. First-principles insights into Cu-decorated GaN monolayers for sensing CO and HCHO in dry-type transformers[J].ACS Omega, 2021, 6(29): 19127-19133. |
6 | Simões A N, Lustosa G M M M, de Souza Morita E, et al. Room-temperature SnO2-based sensor with Pd-nanoparticles for real-time detection of CO dissolved gas in transformer oil[J]. Materials Chemistry and Physics, 2024, 311: 128576. |
7 | Li Z, Zhang Q R, Wang Z T, et al. A highly sensitive low-pressure TDLAS sensor for detecting dissolved CO and CO2 in transformer insulating oil[J]. Optics & Laser Technology, 2024, 174: 110622. |
8 | Zeng Q L, Wang L H, Zhu H, et al. Estimating daily concentrations of near-surface CO, NO2, and O3 simultaneously over China based on spatiotemporal multi-task transformer model[J]. Atmospheric Environment, 2024, 316: 120193. |
9 | Gui Y G, Liu Z C, Ji C, et al. Adsorption behavior of metal oxides (CuO, NiO, Ag2O) modified GeSe monolayer towards dissolved gases (CO, CH4, C2H2, C2H4) in transformer oil[J]. Journal of Industrial and Engineering Chemistry, 2022, 112: 134-145. |
10 | Wang H M, Wu H L, Cui H. First-principles screening in Cu-embedded PtSe2 monolayer as a potential gas sensor upon CO and HCHO in dry-type transformers[J]. Computational and Theoretical Chemistry, 2022, 1209: 113586. |
11 | Cui H, Jia P F, Peng X Y, et al. Adsorption and sensing of CO and C2H2 by S-defected SnS2 monolayer for DGA in transformer oil: a DFT study[J]. Materials Chemistry and Physics, 2020, 249: 123006. |
12 | Xie R J, Lu J B, Wang J. High performance room temperature CO gas sensor based on CuO/ TiO2/N-MWCNTs ternary nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2024, 131: 248-256. |
13 | Wu H, Fang J, Yuan S, et al. Exploration on the application of copper oxide particles doped janus ZrSSe in detecting dissolved gases in oil-immersed transformers: a DFT study[J]. Materials Today Chemistry, 2024, 38: 102038. |
14 | He T, Liu H C, Zhang J, et al. DFT study on the adsorption and sensing properties of dissolved gases (H2, CO and CH4) in transformer oil on PdO-doped In2O3 (110) surfaces[J]. Chemical Physics Letters, 2023, 832: 140865. |
15 | Zhao P P, Tang M C, Zhang D Z. Adsorption of dissolved gas molecules in the transformer oil on metal (Ag, Rh, Sb)-doped PdSe2 momlayer: a first-principles study[J]. Applied Surface Science, 2022, 600: 154054. |
16 | Chen Z W, Zhang X X, Xiong H, et al. Dissolved gas analysis in transformer oil using Pt-doped WSe2 monolayer based on first principles method[J]. IEEE Access, 2019, 7: 72012-72019. |
17 | Zhang Y S, Yan S C, Zhu Y W. Gas-sensing properties of Ti, Zr, V, and Nb-modified Ti3C2O2 for decomposed gases in locomotive electric transformers: a DFT study[J]. Dalton Transactions, 2024, 53(8): 3548-3558. |
18 | Zhang B S, Zhang J Q, Huang Y, et al. Burning process and fire characteristics of transformer oil[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 1839-1848. |
19 | Saeid M, Zeinoddini-Meymand H, Kamel S, et al. Interaction of transformer oil parameters on each other and on transformer health index using curve estimation regression method[J]. International Transactions on Electrical Energy Systems, 2022, 2022: 7548533. |
20 | Prasojo R A, Diwyacitta K, Suwarno, et al. Transformer paper expected life estimation using ANFIS based on oil characteristics and dissolved gases (case study: Indonesian transformers)[J]. Energies, 2017, 10(8): 1135. |
21 | Jia L F, Chen J X, Cui X S, et al. Gas sensing mechanism and adsorption properties of C2H4 and CO molecules on the Ag3-HfSe2 monolayer: a first-principle study[J]. Frontiers in Chemistry, 2022, 10: 911170. |
22 | Cui H, Chen D C, Zhang Y, et al. Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory[J]. Sustainable Materials and Technologies, 2019, 20: e0094. |
23 | Qiao H, Zhang X B, Wang P, et al. Metal oxide decorated GeTe monolayer as promising materials for dissolved gases in transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(2): 904-911. |
24 | Zeng T T, Ma D L, Gui Y G. Gas-sensitive performance study of metal (Au, Pd, Pt)/ZnO heterojunction gas sensors for dissolved gases in transformer oil[J]. Langmuir, 2024, 40(18): 9819-9830. |
25 | Xu Z L. Ni-decorated PtS2 monolayer as a strain-modulated and outstanding sensor upon dissolved gases in transformer oil: a first-principles study[J]. ACS Omega, 2023, 8(6): 6090-6098. |
26 | Zheng H B, Yang E C, Wu S Y, et al. Investigation on formation mechanisms of carbon oxides during thermal aging of cellulosic insulating paper[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1226-1233. |
27 | Zhao P P, Li T T, Zhang D Z. Adsorption of dissolved gas molecules in the transformer oil on silver-modified (002) planes of molybdenum diselenide monolayer: a DFT study[J]. Journal of Physics: Condensed Matter, 2021, 33(48): 485201. |
28 | Wang X R, Gui Y G, Ding Z Y, et al. Density functional theory study of Pd, Pt, and Au modified GeSe for adsorption and sensing of dissolved gases in transformer oil[J]. Surfaces and Interfaces, 2022, 31: 101994. |
29 | Qian G C, Hu J, Wang S, et al. Adsorption and sensing properties of dissolved gas in oil on Cr-doped InN monolayer: a density functional theory study[J]. Chemosensors, 2022, 10(1): 30. |
30 | Mu L, Chen D C, Cui H. Single Pd atom embedded Janus HfSeTe as promising sensor for dissolved gas detection in transformer oil: a density functional theory study[J]. Surfaces and Interfaces, 2022, 35: 102398. |
31 | Jung Mi H, Kwak M, Ahn J, et al. Highly sensitive and selective acetylene CuO/ZnO heterostructure sensors through electrospinning at lean O2 concentration for transformer diagnosis[J]. ACS Sensors, 2024, 9(1): 217-227. |
32 | Mann S, Mudahar I, Sharma H, et al. Lattice thermal conductivity of pure and doped (B, N) graphene[J]. Materials Research Express, 2020, 7(9): 095003. |
33 | Siburian R, Sebayang K, Supeno M, et al. Effect of N-doped graphene for properties of Pt/N-doped graphene catalyst[J]. ChemistrySelect, 2017, 2(3): 1188-1195. |
34 | 张芳芳, 韩敏, 赵娟, 等. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391. |
Zhang F F, Han M, Zhao J, et al. DFT study on reduction of NO over Pd atom anchored on single-vacancy graphene[J]. CIESC Journal, 2021, 72(3): 1382-1391. | |
35 | Gao Q Q. A DFT study of the ORR on M-N3 (M = Mn, Fe, Co, Ni, or Cu) co-doped graphene with moiety-patched defects[J]. Ionics, 2020, 26(5): 2453-2465. |
36 | Jo W K, Jin Y J. 2D graphene-assisted low-cost metal (Ag, Cu, Fe, or Ni)-doped TiO2 nanowire architectures for enhanced hydrogen generation[J]. Journal of Alloys and Compounds, 2018, 765: 106-112. |
37 | Singla M, Sharma D, Jaggi N. Effect of transition metal (Cu and Pt) doping/co-doping on hydrogen gas sensing capability of graphene: a DFT study[J]. International Journal of Hydrogen Energy, 2021, 46(29): 16188-16201. |
38 | 马生贵, 田博文, 周雨薇, 等. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503. |
Ma S G, Tian B W, Zhou Y W, et al. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene[J]. CIESC Journal, 2021, 72(9): 4496-4503. | |
39 | Gui Y G, Peng X, Liu K, et al. Adsorption of C2H2, CH4 and CO on Mn-doped graphene: atomic, electronic, and gas-sensing properties[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119: 113959. |
40 | Zhao C J, Wu H R. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: a DFT study[J]. Applied Surface Science, 2018, 435: 1199-1212. |
41 | Zheng Z Q, Wang H L. Different elements doped graphene sensor for CO2 greenhouse gases detection: the DFT study[J]. Chemical Physics Letters, 2019, 721: 33-37. |
42 | Avramov P V, Kudin K N, Scuseria G E. Single wall carbon nanotubes density of states: comparison of experiment and theory[J]. Chemical Physics Letters, 2003, 370(5/6): 597-601. |
43 | Yue Y X, Zuo F M, Wang B L, et al. Highly efficient catalyst for 1,1,2-trichloroethane dehydrochlorination via BN3 frustrated Lewis acid-base pairs[J]. Nano Research, 2024, 17(6): 4773-4781. |
[1] | Weijie ZHANG, Jiawen HE, Yiming ZHANG, Deli LI, Guangya HU, Xiao CAI, Jinhua WANG, Zuohua HUANG. Effects of fuel stratification on flow field and flame structure of multi-stage swirling methane combustion [J]. CIESC Journal, 2025, 76(4): 1754-1764. |
[2] | Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks [J]. CIESC Journal, 2025, 76(4): 1534-1544. |
[3] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
[4] | Mengqi SHI, Huan WANG, Shoujuan WANG, Yuebin XI, Fangong KONG. Research progress of lignin-based polyporous carbon in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(4): 1463-1483. |
[5] | Yihao JIN, Junxin LUO, Zhangmao HU, Wei WANG, Qian YIN. Experimental investigation on hydrophilic functionalized MgSO4/expanded vermiculite composites for water adsorption and heat storage [J]. CIESC Journal, 2025, 76(4): 1852-1862. |
[6] | Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen [J]. CIESC Journal, 2025, 76(4): 1731-1741. |
[7] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
[8] | Junde ZHAO, Aiguo ZHOU, Yanlin CHEN, Jiale ZHENG, Tianshu GE. Current status of energy consumption of adsorption CO2 direct air capture [J]. CIESC Journal, 2025, 76(4): 1375-1390. |
[9] | Yingdong ZHAO, Peijun JI, Riyao CONG, Haichao FU, Jialong ZHANG, Pengzhong CHEN, Xiaojun PENG. Preparation and high-resolution lithography study of organic tin photoresists containing acrylates [J]. CIESC Journal, 2025, 76(4): 1820-1830. |
[10] | Guanglei WANG, Xiaoling LIU, Zhen XU, Lin LI. Performances of gas-water direct contact heat exchange for compressed air energy storage [J]. CIESC Journal, 2025, 76(4): 1595-1603. |
[11] | Haiqian ZHAO, Fang CHEN, Tao CHEN, Jianwei GUO, Wenjing LIN, Chufen YANG. Folate-modified pH-responsive copolymer mixed micelles for anticancer drug delivery [J]. CIESC Journal, 2025, 76(4): 1702-1710. |
[12] | Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries [J]. CIESC Journal, 2025, 76(4): 1422-1431. |
[13] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[14] | Xiaokun WANG, Zelin LIAO, Junliang WU, Xingyu CHEN, Yifei YU, Gaohong HE, Xiujuan ZHANG. Preparation and performance evaluation of LDH-PTFPMS/PEI composite membrane for improving blood compatibility and CO2 transfer [J]. CIESC Journal, 2025, 76(4): 1800-1808. |
[15] | Shuli LIU, Wenhao ZHOU, Shaoliang ZHANG, Yongliang SHEN. Heat release performance of direct absorption/storage solar collector [J]. CIESC Journal, 2025, 76(4): 1722-1730. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||