CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 3053-3072.DOI: 10.11949/0438-1157.20241325
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jiawei HU(
), Cong WANG, Meijing LIU
Received:2024-11-19
Revised:2025-01-10
Online:2025-07-09
Published:2025-06-25
Contact:
Jiawei HU
通讯作者:
胡家玮
作者简介:胡家玮(1982—),男,博士,副教授,hujiawei@lut.edu.cn
CLC Number:
Jiawei HU, Cong WANG, Meijing LIU. Utility model relates to double - layer anti - scale and hydrophobic coating that inhibits crystal formation in tunnel drainage pipe[J]. CIESC Journal, 2025, 76(6): 3053-3072.
胡家玮, 王聪, 刘美婧. 一种抑制隧道排水管道中结晶体形成的双层阻垢疏水涂层[J]. 化工学报, 2025, 76(6): 3053-3072.
Add to citation manager EndNote|Ris|BibTeX
| 元素 | 占比/% |
|---|---|
| O | 55.46 |
| C | 24.31 |
| Ca | 15.94 |
| Mg | 2.13 |
| Fe | 1.72 |
| Si | 0.3 |
| Na | 0.06 |
| S | 0.04 |
| K | 0.03 |
| Cl | 0.01 |
Table 1 Crystal sample element species
| 元素 | 占比/% |
|---|---|
| O | 55.46 |
| C | 24.31 |
| Ca | 15.94 |
| Mg | 2.13 |
| Fe | 1.72 |
| Si | 0.3 |
| Na | 0.06 |
| S | 0.04 |
| K | 0.03 |
| Cl | 0.01 |
| 检测点位 | 流速/(m/s) | pH | 离子含量/(mg/L) | ||||
|---|---|---|---|---|---|---|---|
| Ca2+ | Mg2+ | ||||||
| 毛垭山LK3+154 | 0.09 | 8.2 | 8.71 | 11.7 | 12.9 | 172 | 69.9 |
| 毛垭山LK3+200 | 0.12 | 7.9 | 24.2 | 5.63 | 6.16 | 244 | 23.4 |
Table 2 Maoyashan tunnel drainage pipe water sample analysis
| 检测点位 | 流速/(m/s) | pH | 离子含量/(mg/L) | ||||
|---|---|---|---|---|---|---|---|
| Ca2+ | Mg2+ | ||||||
| 毛垭山LK3+154 | 0.09 | 8.2 | 8.71 | 11.7 | 12.9 | 172 | 69.9 |
| 毛垭山LK3+200 | 0.12 | 7.9 | 24.2 | 5.63 | 6.16 | 244 | 23.4 |
| 实验药剂 | 药剂纯度 | 生产厂家 |
|---|---|---|
| 十水合四硼酸钠 | 分析纯(AR) | 烟台市双双化工有限公司 |
| 疏水纳米二氧化硅 | 分析纯(AR) | 佛山蓝岭化工有限公司 |
| 钛酸酯偶联剂 | 分析纯(AR) | 东莞市康锦新材料有限公司 |
| RTV-2硅橡胶 | 97% | 深圳市立诺德科技有限公司 |
| 四氢呋喃 | 分析纯(AR) | 天津市百世化工有限公司 |
| 异丙醇 | 分析纯(AR) | 天津市百世化工有限公司 |
| EDTA | 分析纯(AR) | 天津市大茂化学试剂厂 |
| 氨基磺酸 | 分析纯(AR) | 上海阿拉丁生化科技股份有限公司 |
| 水解聚马来酸酐(HPMA) | 50% | 山东优索化工科技有限公司 |
| 无水氯化钙 | 分析纯(AR) | 天津市百世化工有限公司 |
| 碳酸氢钠 | 分析纯(AR) | 烟台市双双化工有限公司 |
| 海藻酸钠 | 化学纯(AR) | 天津百伦斯生物技术有限公司 |
| 聚乙烯醇 | 分析纯(AR) | 上海臣启化工科技有限公司 |
| 聚乙二醇-600(PEG-600) | 分析纯(AR) | 无锡市亚泰联合化工有限公司 |
| 聚乙烯吡咯烷酮(PVP) | 分析纯(AR) | 天津市光复科技发展有限公司 |
Table 3 Experimental reagents
| 实验药剂 | 药剂纯度 | 生产厂家 |
|---|---|---|
| 十水合四硼酸钠 | 分析纯(AR) | 烟台市双双化工有限公司 |
| 疏水纳米二氧化硅 | 分析纯(AR) | 佛山蓝岭化工有限公司 |
| 钛酸酯偶联剂 | 分析纯(AR) | 东莞市康锦新材料有限公司 |
| RTV-2硅橡胶 | 97% | 深圳市立诺德科技有限公司 |
| 四氢呋喃 | 分析纯(AR) | 天津市百世化工有限公司 |
| 异丙醇 | 分析纯(AR) | 天津市百世化工有限公司 |
| EDTA | 分析纯(AR) | 天津市大茂化学试剂厂 |
| 氨基磺酸 | 分析纯(AR) | 上海阿拉丁生化科技股份有限公司 |
| 水解聚马来酸酐(HPMA) | 50% | 山东优索化工科技有限公司 |
| 无水氯化钙 | 分析纯(AR) | 天津市百世化工有限公司 |
| 碳酸氢钠 | 分析纯(AR) | 烟台市双双化工有限公司 |
| 海藻酸钠 | 化学纯(AR) | 天津百伦斯生物技术有限公司 |
| 聚乙烯醇 | 分析纯(AR) | 上海臣启化工科技有限公司 |
| 聚乙二醇-600(PEG-600) | 分析纯(AR) | 无锡市亚泰联合化工有限公司 |
| 聚乙烯吡咯烷酮(PVP) | 分析纯(AR) | 天津市光复科技发展有限公司 |
| 实验仪器 | 仪器型号 | 生产厂家 |
|---|---|---|
| 电子分析天平 | BCE224I-1CCN | 赛多利斯科学仪器(北京)有限公司 |
| 超纯水仪 | WP-UP-WF-20S | 四川沃特尔水处理设备有限公司 |
| 便携式pH计 | PHBJ-260 | 上海仪电科学仪器股份有限公司 |
| 超纯水仪 | WP-UP-WF-20S | 四川沃特尔水处理设备有限公司 |
| 电热鼓风干燥箱 | 101-00B | 绍兴市沪越仪器设备有限公司 |
| 数显恒温水浴锅 | HH-6 | 常州市金坛区西城新瑞仪器厂 |
| 接触角测量仪 | CA500 | 广东北斗精密仪器有限公司 |
| 光学显微镜 | XSP-44X.9 | 上海光学仪器一厂 |
| 便携式浊度仪 | WZB-175 | 上海仪电科学仪器股份有限公司 |
| 85-2 数显控温磁力搅拌器 | MS-H280-Pro-LED | 金坛市大地自动化仪器厂 |
| 高精度便携式粗糙度仪 | SF200 | 北京时代山峰科技有限公司 |
| PosiTector200超声波涂层测厚仪 | 200 B1 | 美国迪芙斯高公司 |
| SEM扫描电子显微镜 | ZR4-6 | 赛默飞 |
| X射线光电子能谱仪XPS | EDCALAB QXi | 赛默飞 |
| X射线衍射仪 | D/Max-2400 | Rigaku公司 |
Table 4 Experimental instruments
| 实验仪器 | 仪器型号 | 生产厂家 |
|---|---|---|
| 电子分析天平 | BCE224I-1CCN | 赛多利斯科学仪器(北京)有限公司 |
| 超纯水仪 | WP-UP-WF-20S | 四川沃特尔水处理设备有限公司 |
| 便携式pH计 | PHBJ-260 | 上海仪电科学仪器股份有限公司 |
| 超纯水仪 | WP-UP-WF-20S | 四川沃特尔水处理设备有限公司 |
| 电热鼓风干燥箱 | 101-00B | 绍兴市沪越仪器设备有限公司 |
| 数显恒温水浴锅 | HH-6 | 常州市金坛区西城新瑞仪器厂 |
| 接触角测量仪 | CA500 | 广东北斗精密仪器有限公司 |
| 光学显微镜 | XSP-44X.9 | 上海光学仪器一厂 |
| 便携式浊度仪 | WZB-175 | 上海仪电科学仪器股份有限公司 |
| 85-2 数显控温磁力搅拌器 | MS-H280-Pro-LED | 金坛市大地自动化仪器厂 |
| 高精度便携式粗糙度仪 | SF200 | 北京时代山峰科技有限公司 |
| PosiTector200超声波涂层测厚仪 | 200 B1 | 美国迪芙斯高公司 |
| SEM扫描电子显微镜 | ZR4-6 | 赛默飞 |
| X射线光电子能谱仪XPS | EDCALAB QXi | 赛默飞 |
| X射线衍射仪 | D/Max-2400 | Rigaku公司 |
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 乙醇/ml | 甲酸/ml | 表面情况 | 显微镜下观察 |
|---|---|---|---|---|---|---|---|
| 1 | 0.1 | 5 | 5 | — | — | ![]() | ![]() |
| 2 | 0.1 | 5 | — | 5 | — | ![]() | ![]() |
| 3 | 0.1 | 5 | — | — | 5 | ![]() | ![]() |
Table 5 Solvent volatile screening
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 乙醇/ml | 甲酸/ml | 表面情况 | 显微镜下观察 |
|---|---|---|---|---|---|---|---|
| 1 | 0.1 | 5 | 5 | — | — | ![]() | ![]() |
| 2 | 0.1 | 5 | — | 5 | — | ![]() | ![]() |
| 3 | 0.1 | 5 | — | — | 5 | ![]() | ![]() |
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 表面情况 | 显微镜下观察 |
|---|---|---|---|---|---|
| 1 | 0.1 | 5 | 5 | ![]() | ![]() |
| 2 | 0.1 | 5 | 10 | ![]() | ![]() |
| 3 | 0.1 | 10 | 5 | ![]() | ![]() |
Table 6 Screening diluent and solvent volatile ratio(Ⅰ)
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 表面情况 | 显微镜下观察 |
|---|---|---|---|---|---|
| 1 | 0.1 | 5 | 5 | ![]() | ![]() |
| 2 | 0.1 | 5 | 10 | ![]() | ![]() |
| 3 | 0.1 | 10 | 5 | ![]() | ![]() |
| 组号 | 纳米二氧 化硅/g | 四氢呋喃/ml | 异丙醇/ml | 滚动角/(°) |
|---|---|---|---|---|
| 1 | 0.1 | 5 | 5 | 8.017 |
| 2 | 0.1 | 5 | 6 | 8.102 |
| 3 | 0.1 | 5 | 7 | 8.083 |
| 4 | 0.1 | 5 | 8 | 8.052 |
| 5 | 0.1 | 5 | 9 | 8.024 |
| 6 | 0.1 | 5 | 10 | 8.006 |
Table 7 Screening diluent and solvent volatile ratio(Ⅱ)
| 组号 | 纳米二氧 化硅/g | 四氢呋喃/ml | 异丙醇/ml | 滚动角/(°) |
|---|---|---|---|---|
| 1 | 0.1 | 5 | 5 | 8.017 |
| 2 | 0.1 | 5 | 6 | 8.102 |
| 3 | 0.1 | 5 | 7 | 8.083 |
| 4 | 0.1 | 5 | 8 | 8.052 |
| 5 | 0.1 | 5 | 9 | 8.024 |
| 6 | 0.1 | 5 | 10 | 8.006 |
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 硅烷偶联剂/ml | 酚酞偶联剂/ml | 表面情况 |
|---|---|---|---|---|---|---|
| 1 | 0.1 | 5 | 6 | 0.05 | — | ![]() |
| 2 | 0.1 | 5 | 6 | — | 0.05 | ![]() |
Table 8 Screening interface active agent
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 硅烷偶联剂/ml | 酚酞偶联剂/ml | 表面情况 |
|---|---|---|---|---|---|---|
| 1 | 0.1 | 5 | 6 | 0.05 | — | ![]() |
| 2 | 0.1 | 5 | 6 | — | 0.05 | ![]() |
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 硅烷偶联剂/ml | 方片表面 | 显微镜观察情况 |
|---|---|---|---|---|---|---|
| 1 | 0.05 | 5 | 6 | 0.05 | ![]() | ![]() |
| 2 | 0.1 | 5 | 6 | 0.05 | ![]() | ![]() |
| 3 | 0.15 | 5 | 6 | 0.05 | ![]() | ![]() |
| 4 | 0.2 | 5 | 6 | 0.05 | ![]() | ![]() |
| 5 | 0.25 | 5 | 6 | 0.05 | ![]() | ![]() |
Table 9 Determine the optimal nano filler dosage
| 组号 | 纳米二氧化硅/g | 四氢呋喃/ml | 异丙醇/ml | 硅烷偶联剂/ml | 方片表面 | 显微镜观察情况 |
|---|---|---|---|---|---|---|
| 1 | 0.05 | 5 | 6 | 0.05 | ![]() | ![]() |
| 2 | 0.1 | 5 | 6 | 0.05 | ![]() | ![]() |
| 3 | 0.15 | 5 | 6 | 0.05 | ![]() | ![]() |
| 4 | 0.2 | 5 | 6 | 0.05 | ![]() | ![]() |
| 5 | 0.25 | 5 | 6 | 0.05 | ![]() | ![]() |
| 因素 | 水平 | ||
|---|---|---|---|
| -1 | 0 | 1 | |
| A/ml | 3 | 3.5 | 4 |
| B/ml | 2 | 2.5 | 3 |
| C/g | 0.4 | 0.5 | 0.6 |
Table 10 Three factor horizontal response surface analysis experimental design
| 因素 | 水平 | ||
|---|---|---|---|
| -1 | 0 | 1 | |
| A/ml | 3 | 3.5 | 4 |
| B/ml | 2 | 2.5 | 3 |
| C/g | 0.4 | 0.5 | 0.6 |
| 组号 | A/ml | B/ml | C /g | 碳酸钙的结晶量/g |
|---|---|---|---|---|
| 1 | -1 | -1 | 0 | 0.1515 |
| 2 | 1 | -1 | 0 | 0.0937 |
| 3 | -1 | 1 | 0 | 0.1168 |
| 4 | 1 | 1 | 0 | 0.0272 |
| 5 | -1 | 0 | -1 | 0.2172 |
| 6 | 1 | 0 | -1 | 0.0822 |
| 7 | -1 | 0 | 1 | 0.0858 |
| 8 | 1 | 0 | 1 | 0.0388 |
| 9 | 0 | -1 | -1 | 0.1656 |
| 10 | 0 | 1 | -1 | 0.1193 |
| 11 | 0 | -1 | 1 | 0.0897 |
| 12 | 0 | 1 | 1 | 0.0225 |
| 13 | 0 | 0 | 0 | 0.0757 |
| 14 | 0 | 0 | 0 | 0.0808 |
| 15 | 0 | 0 | 0 | 0.0641 |
| 16 | 0 | 0 | 0 | 0.0796 |
| 17 | 0 | 0 | 0 | 0.0627 |
Table 11 Experimental design and results of response surface optimization for calcium carbonate crystallization
| 组号 | A/ml | B/ml | C /g | 碳酸钙的结晶量/g |
|---|---|---|---|---|
| 1 | -1 | -1 | 0 | 0.1515 |
| 2 | 1 | -1 | 0 | 0.0937 |
| 3 | -1 | 1 | 0 | 0.1168 |
| 4 | 1 | 1 | 0 | 0.0272 |
| 5 | -1 | 0 | -1 | 0.2172 |
| 6 | 1 | 0 | -1 | 0.0822 |
| 7 | -1 | 0 | 1 | 0.0858 |
| 8 | 1 | 0 | 1 | 0.0388 |
| 9 | 0 | -1 | -1 | 0.1656 |
| 10 | 0 | 1 | -1 | 0.1193 |
| 11 | 0 | -1 | 1 | 0.0897 |
| 12 | 0 | 1 | 1 | 0.0225 |
| 13 | 0 | 0 | 0 | 0.0757 |
| 14 | 0 | 0 | 0 | 0.0808 |
| 15 | 0 | 0 | 0 | 0.0641 |
| 16 | 0 | 0 | 0 | 0.0796 |
| 17 | 0 | 0 | 0 | 0.0627 |
| 来源 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| R2 =0.9884, R2(Adj) =0.9735, R2 (Pred)=0.9211 | ||||||
| 模型 | 0.04 | 9 | 0.00441 | 66.38 | < 0.0001 | ** |
| A | 0.014 | 1 | 0.014 | 204.08 | < 0.0001 | ** |
| B | 0.00576 | 1 | 0.00576 | 86.7 | < 0.0001 | ** |
| C | 0.015 | 1 | 0.015 | 227.12 | < 0.0001 | ** |
| AB | 0.000253 | 1 | 0.000253 | 3.8 | 0.0921 | |
| AC | 0.00194 | 1 | 0.00194 | 29.13 | 0.001 | ** |
| BC | 0.000109 | 1 | 0.000109 | 1.64 | 0.2407 | |
| A2 | 0.00104 | 1 | 0.00104 | 15.66 | 0.0055 | ** |
| B2 | 0.000341 | 1 | 0.000341 | 5.13 | 0.0579 | |
| C2 | 0.00132 | 1 | 0.00132 | 19.84 | 0.003 | ** |
| 残差 | 0.000465 | 7 | 0.0000665 | |||
| 失拟项 | 0.000169 | 3 | 0.0000564 | 0.76 | 0.5716 | ns |
| 纯误差 | 0.000296 | 4 | 0.000074 | |||
| 总和 | 0.04 | 16 | ||||
Table 12 The results of regression analysis of calcium carbonate crystal volume model and regression coefficient
| 来源 | 离差平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| R2 =0.9884, R2(Adj) =0.9735, R2 (Pred)=0.9211 | ||||||
| 模型 | 0.04 | 9 | 0.00441 | 66.38 | < 0.0001 | ** |
| A | 0.014 | 1 | 0.014 | 204.08 | < 0.0001 | ** |
| B | 0.00576 | 1 | 0.00576 | 86.7 | < 0.0001 | ** |
| C | 0.015 | 1 | 0.015 | 227.12 | < 0.0001 | ** |
| AB | 0.000253 | 1 | 0.000253 | 3.8 | 0.0921 | |
| AC | 0.00194 | 1 | 0.00194 | 29.13 | 0.001 | ** |
| BC | 0.000109 | 1 | 0.000109 | 1.64 | 0.2407 | |
| A2 | 0.00104 | 1 | 0.00104 | 15.66 | 0.0055 | ** |
| B2 | 0.000341 | 1 | 0.000341 | 5.13 | 0.0579 | |
| C2 | 0.00132 | 1 | 0.00132 | 19.84 | 0.003 | ** |
| 残差 | 0.000465 | 7 | 0.0000665 | |||
| 失拟项 | 0.000169 | 3 | 0.0000564 | 0.76 | 0.5716 | ns |
| 纯误差 | 0.000296 | 4 | 0.000074 | |||
| 总和 | 0.04 | 16 | ||||
| 组号 | 聚乙烯醇/g | 壳聚糖/g | 断裂伸长率/% |
|---|---|---|---|
| 1 | 0.5 | 0.5 | 30 |
| 2 | 1 | 0.5 | 47 |
| 3 | 0.5 | 1 | 7 |
Table 13 Mixed rubber materials of polyvinyl alcohol and chitosan
| 组号 | 聚乙烯醇/g | 壳聚糖/g | 断裂伸长率/% |
|---|---|---|---|
| 1 | 0.5 | 0.5 | 30 |
| 2 | 1 | 0.5 | 47 |
| 3 | 0.5 | 1 | 7 |
| 组号 | 聚乙烯醇/g | 海藻酸钠/g | 断裂伸长率/% |
|---|---|---|---|
| 1 | 0.5 | 0.5 | 87.5 |
| 2 | 1 | 0.5 | 70.0 |
| 3 | 0.5 | 1 | 40 |
Table 14 Polyvinyl alcohol and sodium alginate mixed rubber material(Ⅰ)
| 组号 | 聚乙烯醇/g | 海藻酸钠/g | 断裂伸长率/% |
|---|---|---|---|
| 1 | 0.5 | 0.5 | 87.5 |
| 2 | 1 | 0.5 | 70.0 |
| 3 | 0.5 | 1 | 40 |
| 组号 | 聚乙烯醇/g | 海藻酸钠/g | 断裂伸长率/% |
|---|---|---|---|
| 1 | 1 | 0.8 | 400 |
| 2 | 1 | 0.5 | 700 |
| 3 | 1 | 0.3 | 1300 |
| 4 | 1 | 0.1 | 1700 |
Table 15 Polyvinyl alcohol and chitosan mixed rubber material(Ⅱ)
| 组号 | 聚乙烯醇/g | 海藻酸钠/g | 断裂伸长率/% |
|---|---|---|---|
| 1 | 1 | 0.8 | 400 |
| 2 | 1 | 0.5 | 700 |
| 3 | 1 | 0.3 | 1300 |
| 4 | 1 | 0.1 | 1700 |
| 界面 | 原始溶液中Ca2+浓度/(mg/L) | (滤纸+垢样)/mg | 滤纸/mg | 垢样/mg | 结晶中Ca2+浓度/(mg/L) |
|---|---|---|---|---|---|
| 原始界面 | 802 | 1390.7 | 987.1 | 412.6 | 330.6 |
| 疏水界面 | 802 | 1765.2 | 983.7 | 821.4 | 660 |
| 阻垢界面 | 802 | 1000.2 | 983.1 | 67.5 | 54.0 |
Table 16 Laboratory simulation of crystallization
| 界面 | 原始溶液中Ca2+浓度/(mg/L) | (滤纸+垢样)/mg | 滤纸/mg | 垢样/mg | 结晶中Ca2+浓度/(mg/L) |
|---|---|---|---|---|---|
| 原始界面 | 802 | 1390.7 | 987.1 | 412.6 | 330.6 |
| 疏水界面 | 802 | 1765.2 | 983.7 | 821.4 | 660 |
| 阻垢界面 | 802 | 1000.2 | 983.1 | 67.5 | 54.0 |
| 管材类型 | 平均粗糙度/μm | |
|---|---|---|
| 原始管材 | 11.920 | |
| 带有疏水内层材料的管材 | 0 d | 7.303 |
| 10 d | 6.864 | |
| 20 d | 6.707 | |
| 30 d | 6.645 | |
Table 17 Wall roughness measurement with a hydrophobic inner coating (30 d)
| 管材类型 | 平均粗糙度/μm | |
|---|---|---|
| 原始管材 | 11.920 | |
| 带有疏水内层材料的管材 | 0 d | 7.303 |
| 10 d | 6.864 | |
| 20 d | 6.707 | |
| 30 d | 6.645 | |
| 管材类型 | 平均粗糙度/μm | |
|---|---|---|
| 原始管材 | 11.920 | |
| 涂覆阻垢外层材料的管材 | 0 d | 4.214 |
| 10 d | 4.212 | |
| 20 d | 4.212 | |
| 30 d | 4.212 | |
Table 18 Wall roughness measurement with a hydrophobic inner coating (30 d)
| 管材类型 | 平均粗糙度/μm | |
|---|---|---|
| 原始管材 | 11.920 | |
| 涂覆阻垢外层材料的管材 | 0 d | 4.214 |
| 10 d | 4.212 | |
| 20 d | 4.212 | |
| 30 d | 4.212 | |
| 时间/d | 材料平均厚度/μm |
|---|---|
| 0 | 36.42 |
| 10 | 34.21 |
| 20 | 33.93 |
| 30 | 33.87 |
Table 19 Wall thickness measurement with a hydrophobic inner coating (30 d)
| 时间/d | 材料平均厚度/μm |
|---|---|
| 0 | 36.42 |
| 10 | 34.21 |
| 20 | 33.93 |
| 30 | 33.87 |
| 时间/d | 材料平均厚度/μm |
|---|---|
| 0 | 987.30 |
| 10 | 867.51 |
| 20 | 843.72 |
| 30 | 830.23 |
Table 20 Wall thickness measurement with scale resistant coating (30 d)
| 时间/d | 材料平均厚度/μm |
|---|---|
| 0 | 987.30 |
| 10 | 867.51 |
| 20 | 843.72 |
| 30 | 830.23 |
| 序号 | 粗糙度/μm | 涂层厚度/m | 磨损表面积/m2 | 平均磨损率/(kg/(m2·s)) | 时长/d | |
|---|---|---|---|---|---|---|
| 合计 | 450.36 | |||||
| 1 | 7.303 | 0.0000364 | 1.809557369 | 3.68×10-9 | 123.3937001 | |
| 2 | 6.864 | 0.0000342 | 1.809557369 | 4.20×10-9 | 101.6899615 | |
| 3 | 6.707 | 0.0000339 | 1.809557369 | 3.98×10-9 | 106.4081376 | |
| 4 | 6.645 | 0.0000338 | 1.809557369 | 3.56×10-9 | 118.8659072 | |
Table 21 Ansys fluent software simulates the duration of coating
| 序号 | 粗糙度/μm | 涂层厚度/m | 磨损表面积/m2 | 平均磨损率/(kg/(m2·s)) | 时长/d | |
|---|---|---|---|---|---|---|
| 合计 | 450.36 | |||||
| 1 | 7.303 | 0.0000364 | 1.809557369 | 3.68×10-9 | 123.3937001 | |
| 2 | 6.864 | 0.0000342 | 1.809557369 | 4.20×10-9 | 101.6899615 | |
| 3 | 6.707 | 0.0000339 | 1.809557369 | 3.98×10-9 | 106.4081376 | |
| 4 | 6.645 | 0.0000338 | 1.809557369 | 3.56×10-9 | 118.8659072 | |
| 序号 | 粗糙度/μm | 涂层厚度/m | 磨损表面积/m2 | 平均磨损率/(kg/(m2·s)) | 时长/d | |
|---|---|---|---|---|---|---|
| 合计 | 184.36 | |||||
| 1 | 4.214 | 0.9873 | 1.809557369 | 3.26×10-4 | 51.58242594 | |
| 2 | 4.212 | 0.8675 | 1.809557369 | 3.26×10-4 | 45.32336119 | |
| 3 | 4.212 | 0.8437 | 1.809557369 | 3.26×10-4 | 44.07990759 | |
| 4 | 4.212 | 0.8302 | 1.809557369 | 3.26×10-4 | 43.37458727 | |
Table 22 Ansys fluent software simulates the duration of coating
| 序号 | 粗糙度/μm | 涂层厚度/m | 磨损表面积/m2 | 平均磨损率/(kg/(m2·s)) | 时长/d | |
|---|---|---|---|---|---|---|
| 合计 | 184.36 | |||||
| 1 | 4.214 | 0.9873 | 1.809557369 | 3.26×10-4 | 51.58242594 | |
| 2 | 4.212 | 0.8675 | 1.809557369 | 3.26×10-4 | 45.32336119 | |
| 3 | 4.212 | 0.8437 | 1.809557369 | 3.26×10-4 | 44.07990759 | |
| 4 | 4.212 | 0.8302 | 1.809557369 | 3.26×10-4 | 43.37458727 | |
| [1] | 李昕, 陈旭, 张士兵, 等. 公路隧道排水系统灰岩裂隙水结晶过程及机理分析[J]. 公路交通科技, 2023, 40(4): 136-142. |
| Li X, Chen X, Zhang S B, et al. Analysis of crystallization process and mechanism of limestone fissure water in highway tunnel drainage system[J]. Highway Transportation Technology, 2023, 40(4): 136-142. | |
| [2] | 叶飞, 王坚, 田崇明, 等. 隧道排水管结晶堵塞病害研究现状与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(3): 13-22. |
| Ye F, Wang J, Tian C M, et al. Research status and prevention technology of crystal blockage in tunnel drainage pipe[J]. Disaster Prevention and Control of Tunnel and Underground Engineering, 2020, 2(3): 13-22. | |
| [3] | 于清浩. 厦门翔安海底隧道防排水技术及防排水系统堵塞可能性研究[D]. 北京: 北京交通大学, 2009. |
| Yu Q H. Study on anti-drainage technology and blockage possibility of anti-drainage system of Xiangan Undersea Tunnel in Xiamen[D]. Beijing: Beijing Jiaotong University, 2009. | |
| [4] | Hyuksang J, Yunsu H, Sungrae C, et al. Evaluation of advanced drainage treatment for old tunnel drainage system in Korea[J]. Tunnelling and Underground Space Technology, 2013(38): 476-486. |
| [5] | 田崇明, 叶飞, 宋桂锋, 等. 隧道排水系统结晶堵塞机理及防治措施初探[J]. 现代隧道技术, 2020, 57(5): 66-76, 83. |
| Tian C M, Ye F, Song G F, et al. Study on mechanism and prevention measures of crystallization clogging in tunnel drainage system[J]. Modern Tunnel Technology, 2020, 57(5): 66-76, 83. | |
| [6] | 杨滕飞, 曹红波, 王洋. 高压水射流清洗海水管路技术[J]. 船海工程, 2018, 47(6): 111-114. |
| Yang T F, Cao H B, Wang Y. Technology of high pressure water jet cleaning seawater pipeline[J]. Marine Engineering, 2018, 47(6): 111-114. | |
| [7] | 陈昱池, 陈相阁, 张学富, 等. 基于磁处理法的隧道永磁体排水管防结晶试验[J]. 隧道建设(中英文), 2022, 42(12): 2105-2111. |
| Chen Y H, Chen X G, Zhang X F, et al. Anti-crystallization test of tunnel permanent magnet drain pipe based on magnetic treatment[J]. Tunnel Construction (Chinese & English), 2022, 42(12): 2105-2111. | |
| [8] | Wang Z, Su J, Hu X, et al. Isolation of biosynthetic crystals by microbially induced calcium carbonate precipitation and their utilization for fluoride removal from groundwater[J]. Journal of hazardous materials, 2021, 406: 124748. |
| [9] | 周厚安. 油气田开发中硫酸盐垢的形成及防垢剂和除垢剂研究与应用进展[J]. 石油与天然气化工, 1999(3): 212-214, 217. |
| Zhou H A. Formation of sulfate scale in oil and gas field development and research and application progress of anti-scale and descaling agents[J]. Petroleum & Gas Chemical Industry,1999(3): 212-214, 217. | |
| [10] | Jofre-Reche A J, Fuensanta M, Yáñez-Pacios A, et al. Improvement in adhesion, abrasion resistance, and aging of polyurethane coatings prepared with polycarbonate diol for internal pipelines[J]. Journal of Materials in CivilEngineering, 2017, 29(10): 06017009. |
| [11] | Samardžija M, Stojanović I, Kurtela M, et al. Influence of aluminum nanoparticles in epoxy resin and epoxy coating for anticorrosion and antibacterial protection in pipeline industry[J]. Journal of Applied Polymer Science, 2024, 141(8): e55002. |
| [12] | Zhu Y, Li H, Zhu M, et al. Dynamic and active antiscaling via scale inhibitor pre-stored superhydrophobic coating[J]. Chemical Engineering Journal, 2021, 403: 126467. |
| [13] | 蒋雅君, 陶磊, 刘世军, 等. 岩溶隧道衬砌施工缝疏水涂层长期工作性能研究[J]. 中国公路学报, 2022, 35(4): 186-194. |
| Jiang Y J, Tao L, Liu S J, et al. Research on the long term performance of hydrophobic coating for construction joints of karst tunnel lining[J]. Chinese Journal of Highways, 2022, 35(4): 186-194. | |
| [14] | Huang X, Li C, Zuo K, et al. Predominant effect of material surface hydrophobicity on gypsum scale formation[J]. Environmental Science & Technology, 2020, 54(23): 15395-15404. |
| [15] | Wen J, Hu H, Luo Z, et al. Experimental investigation of flow past a circular cylinder with hydrophobic coating[J]. Journal of Hydrodynamics, 2018, 30: 992-1000. |
| [16] | Saji Viswanathan S. Carbon nanostructure-based superhydrophobic surfaces and coatings[J]. Nanotechnology Reviews, 2021, 10(1): 518-571. |
| [17] | Xiao Y, Hao R, Zhao S. Study on the sustained release behavior of a slow-release scale-inhibiting material[J]. Journal of Polymer Research, 2024, 31(6): 1-11. |
| [18] | 唐莉清, 李向红, 朱平, 等. 吐温-80对一种冷轧钢在氨基磺酸溶液中的缓蚀性能及机理研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1538-1546. |
| Tang L Q, Li X H, Zhu P, et al. Study on corrosion inhibition properties and mechanism of a cold-rolled steel in sulfamic acid solution by Tween-80[J]. Chinese Journal of Corrosion and Protection, 2019, 44(6): 1538-1546. | |
| [19] | Devi M N, Raj K S, Subramanian V K. Synergistic effects of magnesium and EDTA on polymorphism and morphology of CaCO3 and its influence on scale[J]. Journal of crystal growth, 2021, 564: 126108. |
| [20] | Al-Roomi Y M, Hussain K F. Potential kinetic model for scaling and scale inhibition mechanism[J]. Desalination, 2016, 393: 186-195. |
| [21] | Wang C, Liu S, Li M, et al. Novel environmentally friendly waterborne epoxy coating with long-term antiscaling and anticorrosion properties[J]. Langmuir, 2021, 37(31): 9439-9450. |
| [22] | Zhu Y, Li H, Zhu M, et al. Dynamic and active antiscaling via scale inhibitor pre-stored superhydrophobic coating[J]. Chemical Engineering Journal, 2021, 403: 126467. |
| [23] | Parkash O, Kumar A, Sikarwar B S. Computational erosion wear model validation of particulate flow through mitre pipe bend[J]. Arabian Journal for Science and Engineering, 2021, 46: 12373-12390. |
| [24] | Jong-Hwi L, Ick-Chan C, Hyun-Gi K. Evaluation of technology for preventing drainage pipe blockage in deteriorated tunnel[C]//22nd International Offshore and Polar Engineering Conference. 2012: 606-611. |
| [25] | Higashitani K, Kage A, Katamura S, et al. Effects of a magnetic field on the formation of CaCO3 particles[J]. Journal of Colloid and Interface Science, 1993, 156(1): 90-95. |
| [26] | Nebel H, Epple M. Continuous preparation of calcite, aragonite and vaterite, and of magnesium-substituted amorphous calcium carbonate (Mg-ACC)[J]. Zeitschrift für anorganische und allgemeine Chemie, 2010, 634(8): 1439-1443. |
| [27] | Yang B, Zhang S H, Zou Y F, et al. Improving the thermal conductivity and mechanical properties of two-component room temperature vulcanized silicone rubber by filling with hydrophobically modified SiO2-graphene nanohybrids[J]. Chinese Journal of Polymer Science, 2019, 37: 189-196. |
| [28] | Zhang M, Zhu H, Xi B, et al. Surface hydrophobic modification of biochar by silane coupling agent KH-570[J]. Processes, 2022, 10(2): 301. |
| [29] | Sanjiv Raj K, Nirmala Devi M, Palanisamy K, et al. Individual and synergetic effect of EDTA and NTA on polymorphism and morphology of CaCO3 crystallization process in presence of Barium[J]. Journal of Solid State Chemistry, 2021, 302: 122026. |
| [30] | Jiang X, Xiang N, Zhang H, et al. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity[J]. Carbohydrate polymers, 2018, 186: 377-383. |
| [31] | 国家市场监督管理总局, 中国国家标准化管理委员会, 全国塑料制品标准化技术委员会. 埋地用聚乙烯(PE)结构壁管道系统 第1部分: 聚乙烯双壁波纹管材: [S]. 北京: 中国标准出版社, 2019. |
| State Administration for Market Regulation, Standardization Administration of China, National Technical Committee for Standardization of Plastic Products. Polyethylene structure wall pipeline system for underground usage(part 1): Polyethylene double wall corrugated pipes: [S]. Beijing: Standards Press of China, 2019. | |
| [32] | Li K, Peng J, Li Y, et al. Performance prediction of solid particle erosion in fluidic oscillators for fluidic hammers based on CFD-DPM[J]. Powder Technology, 2023, 428: 118819. |
| [1] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [2] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [3] | Wenfeng ZHANG, Wei GUO, Xinyu ZHANG, Haomin CAO, Guoliang DING. Model development and software implementation of the aluminum tube and aluminum fin heat exchanger [J]. CIESC Journal, 2025, 76(S1): 84-92. |
| [4] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [5] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [6] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [7] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [8] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [9] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [10] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [11] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [12] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [13] | Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles [J]. CIESC Journal, 2025, 76(S1): 318-325. |
| [14] | Chengyun WU, Haoran SUN. Performance simulation and fuel penalty investigation of civil aircraft air conditioning systems [J]. CIESC Journal, 2025, 76(S1): 351-359. |
| [15] | Wei LI, Hao CHEN, Gang KE, Xiaosheng HUANG, Chengjiao LI, Hang GUO, Fang YE. Simulation of the fresh air system in the simulation platform of the high-altitude environmental adaptability laboratory [J]. CIESC Journal, 2025, 76(S1): 360-369. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||