CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 3041-3052.DOI: 10.11949/0438-1157.20241144
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Ziyang LI(
), Peixin SHEN, Xiao'a ZHANG(
), Chengzhong WANG, Ling SHI, Junying ZHANG
Received:2024-10-17
Revised:2025-01-14
Online:2025-07-09
Published:2025-06-25
Contact:
Xiao'a ZHANG
李子阳(
), 申沛鑫, 张孝阿(
), 王成忠, 史翎, 张军营
通讯作者:
张孝阿
作者简介:李子阳(2000—),男,硕士研究生,lee13396013613@163.com
基金资助:CLC Number:
Ziyang LI, Peixin SHEN, Xiao'a ZHANG, Chengzhong WANG, Ling SHI, Junying ZHANG. Synthesis and thermal stability of α, ω-hydroxy-terminated phenyl/phenylene-containing polysiloxanes with high vinyl content[J]. CIESC Journal, 2025, 76(6): 3041-3052.
李子阳, 申沛鑫, 张孝阿, 王成忠, 史翎, 张军营. α, ω-端羟基苯基/亚苯基高乙烯基聚硅氧烷的合成及热稳定性[J]. 化工学报, 2025, 76(6): 3041-3052.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | 温度/℃ | 反应 时间/h | 产率/% | η(25℃)/(Pa·s) | Mn | PDI |
|---|---|---|---|---|---|---|
| 1 | 90 | — | — | — | — | — |
| 2 | 100 | 3.5 | 62 | 8.9 | 21100 | 1.56 |
| 3 | 110 | 2 | 77 | 9.3 | 25300 | 1.64 |
| 4 | 120 | 0.5 | 90 | 10.0 | 27200 | 1.51 |
Table 1 Effect of temperature on reaction(P1-5)
| 序号 | 温度/℃ | 反应 时间/h | 产率/% | η(25℃)/(Pa·s) | Mn | PDI |
|---|---|---|---|---|---|---|
| 1 | 90 | — | — | — | — | — |
| 2 | 100 | 3.5 | 62 | 8.9 | 21100 | 1.56 |
| 3 | 110 | 2 | 77 | 9.3 | 25300 | 1.64 |
| 4 | 120 | 0.5 | 90 | 10.0 | 27200 | 1.51 |
| 序号 | TMAS/g | H2O/g | 产率/% | η/(Pa·s) | Mn | PDI |
|---|---|---|---|---|---|---|
| 1 | 0.45 | 0.25 | 78 | 13.6 | 37700 | 1.54 |
| 2 | 0.60 | 0.25 | 82 | 12.8 | 32600 | 1.66 |
| 3 | 0.75 | 0.25 | 89 | 10.7 | 25200 | 1.43 |
| 4 | 0.90 | 0.25 | 96 | 9.3 | 21400 | 1.51 |
| 5 | 0.75 | 0.10 | 95 | 14.4 | 48600 | 1.74 |
| 6 | 0.75 | 0.15 | 95 | 14.1 | 46500 | 1.36 |
| 7 | 0.75 | 0.20 | 94 | 12.6 | 31400 | 1.53 |
Table 2 Effect of catalyst and capping agent dosages on the synthesis of P1-5
| 序号 | TMAS/g | H2O/g | 产率/% | η/(Pa·s) | Mn | PDI |
|---|---|---|---|---|---|---|
| 1 | 0.45 | 0.25 | 78 | 13.6 | 37700 | 1.54 |
| 2 | 0.60 | 0.25 | 82 | 12.8 | 32600 | 1.66 |
| 3 | 0.75 | 0.25 | 89 | 10.7 | 25200 | 1.43 |
| 4 | 0.90 | 0.25 | 96 | 9.3 | 21400 | 1.51 |
| 5 | 0.75 | 0.10 | 95 | 14.4 | 48600 | 1.74 |
| 6 | 0.75 | 0.15 | 95 | 14.1 | 46500 | 1.36 |
| 7 | 0.75 | 0.20 | 94 | 12.6 | 31400 | 1.53 |
| 序号 | 温度/℃ | 反应时间/h | 产率/% | η/(Pa·s) | Mn | PDI |
|---|---|---|---|---|---|---|
| 1 | 90 | 3 | 56 | 16.6 | 69800 | 1.46 |
| 2 | 100 | 3 | 76 | 17.9 | 77700 | 1.54 |
| 3 | 110 | 3 | 95 | 20.9 | 81200 | 1.66 |
| 4 | 120 | 3 | 94 | 17.2 | 75700 | 1.64 |
| 5 | 110 | 5 | 96 | 22.1 | 92100 | 1.57 |
| 6 | 110 | 8 | 94 | 23.8 | 100300 | 1.58 |
| 7 | 110 | 10 | 95 | 24.4 | 101500 | 1.54 |
Table 3 Effect of temperature and time on the synthesis of P2
| 序号 | 温度/℃ | 反应时间/h | 产率/% | η/(Pa·s) | Mn | PDI |
|---|---|---|---|---|---|---|
| 1 | 90 | 3 | 56 | 16.6 | 69800 | 1.46 |
| 2 | 100 | 3 | 76 | 17.9 | 77700 | 1.54 |
| 3 | 110 | 3 | 95 | 20.9 | 81200 | 1.66 |
| 4 | 120 | 3 | 94 | 17.2 | 75700 | 1.64 |
| 5 | 110 | 5 | 96 | 22.1 | 92100 | 1.57 |
| 6 | 110 | 8 | 94 | 23.8 | 100300 | 1.58 |
| 7 | 110 | 10 | 95 | 24.4 | 101500 | 1.54 |
| 序号 | 聚合物 | D4/g | D4Vi/g | D4Ph2/g | BHB/g | TMAS/g | H2O/g | η/(Pa·s) | 产率/% | Mn | PDI |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | P1-25 | 44.49 | 21.54 | 29.73 | — | 0.9 | 0.25 | 15.0 | 93 | 52900 | 1.71 |
| 2 | P1-45 | 29.66 | 38.77 | 29.73 | — | 0.9 | 0.25 | 14.3 | 96 | 54600 | 1.59 |
| 3 | P1-65 | 14.83 | 56.01 | 29.73 | — | 0.9 | 0.25 | 13.5 | 95 | 48500 | 1.69 |
| 4 | P1-85 | 0 | 73.24 | 29.73 | — | 0.9 | 0.25 | 11.4 | 96 | 43100 | 1.80 |
| 5 | P2-15 | 17.80 | 8.62 | — | 3.40 | 0.35 | — | 20.8 | 95 | 80600 | 1.53 |
| 6 | P2-25 | 14.83 | 8.62 | — | 5.66 | 0.35 | — | 14.4 | 97 | 64400 | 1.66 |
| 7 | P2-35 | 11.86 | 8.62 | — | 7.92 | 0.35 | — | 12.2 | 94 | 48700 | 1.60 |
| 8 | P2-45 | 8.90 | 8.62 | — | 10.18 | 0.35 | — | 13.7 | 95 | 56600 | 1.70 |
Table 4 Polysiloxanes synthesized at different feed ratios
| 序号 | 聚合物 | D4/g | D4Vi/g | D4Ph2/g | BHB/g | TMAS/g | H2O/g | η/(Pa·s) | 产率/% | Mn | PDI |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | P1-25 | 44.49 | 21.54 | 29.73 | — | 0.9 | 0.25 | 15.0 | 93 | 52900 | 1.71 |
| 2 | P1-45 | 29.66 | 38.77 | 29.73 | — | 0.9 | 0.25 | 14.3 | 96 | 54600 | 1.59 |
| 3 | P1-65 | 14.83 | 56.01 | 29.73 | — | 0.9 | 0.25 | 13.5 | 95 | 48500 | 1.69 |
| 4 | P1-85 | 0 | 73.24 | 29.73 | — | 0.9 | 0.25 | 11.4 | 96 | 43100 | 1.80 |
| 5 | P2-15 | 17.80 | 8.62 | — | 3.40 | 0.35 | — | 20.8 | 95 | 80600 | 1.53 |
| 6 | P2-25 | 14.83 | 8.62 | — | 5.66 | 0.35 | — | 14.4 | 97 | 64400 | 1.66 |
| 7 | P2-35 | 11.86 | 8.62 | — | 7.92 | 0.35 | — | 12.2 | 94 | 48700 | 1.60 |
| 8 | P2-45 | 8.90 | 8.62 | — | 10.18 | 0.35 | — | 13.7 | 95 | 56600 | 1.70 |
| 聚合物 | 峰位 | 硅原子位置 | δ | 聚合物 | 峰位 | 硅原子位置 | δ |
|---|---|---|---|---|---|---|---|
| P1 | A | ![]() | 约-19.04 | P2 | a | ![]() | 约-1.29 |
| b | ![]() | 约-20.69 | b | ![]() | 约-1.73 | ||
| c | ![]() | 约-21.32 | c | ![]() | 约-2.63 | ||
| d | ![]() | 约-21.79 | d | ![]() | 约-19.06 | ||
| e | ![]() | 约-34.96 | e | ![]() | 约-21.43 | ||
| f | ![]() | 约-47.78 | f | ![]() | 约-35.45 |
Table 5 Characteristic absorption peaks corresponding to different silicon atoms in P1 and P2
| 聚合物 | 峰位 | 硅原子位置 | δ | 聚合物 | 峰位 | 硅原子位置 | δ |
|---|---|---|---|---|---|---|---|
| P1 | A | ![]() | 约-19.04 | P2 | a | ![]() | 约-1.29 |
| b | ![]() | 约-20.69 | b | ![]() | 约-1.73 | ||
| c | ![]() | 约-21.32 | c | ![]() | 约-2.63 | ||
| d | ![]() | 约-21.79 | d | ![]() | 约-19.06 | ||
| e | ![]() | 约-34.96 | e | ![]() | 约-21.43 | ||
| f | ![]() | 约-47.78 | f | ![]() | 约-35.45 |
| 序号 | 聚合物 | 邵氏A硬度 | 拉伸强度/MPa | 断裂伸长率/% |
|---|---|---|---|---|
| 1 | P1-0 | 23±2 | 0.90 | 374 |
| 2 | P1-5 | 19±4 | 0.69 | 287 |
| 3 | P1-25 | 20±2 | 0.74 | 301 |
| 4 | P1-45 | 21±3 | 0.92 | 336 |
| 5 | P1-65 | 24±2 | 0.94 | 325 |
| 6 | P1-85 | 25±2 | 0.86 | 313 |
| 7 | P2-15 | 21±2 | 1.25 | 402 |
| 8 | P2-25 | 24±3 | 1.34 | 424 |
| 9 | P2-35 | 28±2 | 1.46 | 450 |
| 10 | P2-45 | 31±2 | 1.51 | 485 |
Table 6 Hardness, tensile strength and elongation at break of silicone rubber (cured P1 and P2)
| 序号 | 聚合物 | 邵氏A硬度 | 拉伸强度/MPa | 断裂伸长率/% |
|---|---|---|---|---|
| 1 | P1-0 | 23±2 | 0.90 | 374 |
| 2 | P1-5 | 19±4 | 0.69 | 287 |
| 3 | P1-25 | 20±2 | 0.74 | 301 |
| 4 | P1-45 | 21±3 | 0.92 | 336 |
| 5 | P1-65 | 24±2 | 0.94 | 325 |
| 6 | P1-85 | 25±2 | 0.86 | 313 |
| 7 | P2-15 | 21±2 | 1.25 | 402 |
| 8 | P2-25 | 24±3 | 1.34 | 424 |
| 9 | P2-35 | 28±2 | 1.46 | 450 |
| 10 | P2-45 | 31±2 | 1.51 | 485 |
| 序号 | 聚合物 | 气相白炭黑/份 | 邵氏A硬度 | 拉伸强度/MPa | 断裂伸长率/% |
|---|---|---|---|---|---|
| 1 | P1-25 | 20 | 24 | 1.7 | 354 |
| 2 | P1-25 | 30 | 30 | 3.2 | 327 |
| 3 | P1-25 | 40 | 36 | 4.2 | 298 |
| 4 | P2-15 | 20 | 29 | 1.9 | 432 |
| 5 | P2-15 | 30 | 31 | 3.3 | 465 |
| 6 | P2-15 | 40 | 35 | 5.2 | 541 |
Table 7 Effect of the dosage of fumed silica on the mechanical properties of silicone rubbers
| 序号 | 聚合物 | 气相白炭黑/份 | 邵氏A硬度 | 拉伸强度/MPa | 断裂伸长率/% |
|---|---|---|---|---|---|
| 1 | P1-25 | 20 | 24 | 1.7 | 354 |
| 2 | P1-25 | 30 | 30 | 3.2 | 327 |
| 3 | P1-25 | 40 | 36 | 4.2 | 298 |
| 4 | P2-15 | 20 | 29 | 1.9 | 432 |
| 5 | P2-15 | 30 | 31 | 3.3 | 465 |
| 6 | P2-15 | 40 | 35 | 5.2 | 541 |
| 序号 | 聚合物 | T5d/℃ | Tmax/℃ | 残炭率/% |
|---|---|---|---|---|
| 1 | P1-0 | 288 | 584 | 19.99 |
| 2 | P1-5 | 232 | 554 | 47.53 |
| 3 | P1-25 | 188 | 565 | 59.67 |
| 4 | P1-45 | 185 | 559 | 65.07 |
| 5 | P1-65 | 231 | 577 | 71.19 |
| 6 | P1-85 | 235 | 554 | 74.02 |
| 7 | P2-15 | 479 | 586 | 48.59 |
| 8 | P2-25 | 487 | 589 | 56.96 |
| 9 | P2-35 | 500 | 587 | 62.83 |
| 10 | P2-45 | 412 | 576 | 63.12 |
Table 8 The characteristic temperatures of the TG curves and char yield of polysiloxanes (cured P1 and P2)
| 序号 | 聚合物 | T5d/℃ | Tmax/℃ | 残炭率/% |
|---|---|---|---|---|
| 1 | P1-0 | 288 | 584 | 19.99 |
| 2 | P1-5 | 232 | 554 | 47.53 |
| 3 | P1-25 | 188 | 565 | 59.67 |
| 4 | P1-45 | 185 | 559 | 65.07 |
| 5 | P1-65 | 231 | 577 | 71.19 |
| 6 | P1-85 | 235 | 554 | 74.02 |
| 7 | P2-15 | 479 | 586 | 48.59 |
| 8 | P2-25 | 487 | 589 | 56.96 |
| 9 | P2-35 | 500 | 587 | 62.83 |
| 10 | P2-45 | 412 | 576 | 63.12 |
| 序号 | 处理温度/℃ | 交联密度/(10-5 mol·cm-3) |
|---|---|---|
| 1 | 25 | 6.03 |
| 2 | 200 | 15.59 |
| 3 | 250 | 51.18 |
| 4 | 300 | 152.36 |
| 5 | 350 | 361.02 |
| 6 | 400 | 615.56 |
Table 9 Crosslinking density of cured P1-85 after holding at different temperatures for 10 min
| 序号 | 处理温度/℃ | 交联密度/(10-5 mol·cm-3) |
|---|---|---|
| 1 | 25 | 6.03 |
| 2 | 200 | 15.59 |
| 3 | 250 | 51.18 |
| 4 | 300 | 152.36 |
| 5 | 350 | 361.02 |
| 6 | 400 | 615.56 |
| 序号 | 处理温度/℃ | 交联密度/(10-5, mol·cm-3) | |
|---|---|---|---|
| P1-25 | P2-15 | ||
| 1 | 25 | 7.24 | 6.58 |
| 2 | 200 | 11.13 | 12.55 |
| 3 | 250 | 19.21 | 21.19 |
| 4 | 300 | 23.56 | 35.12 |
| 5 | 350 | 55.97 | 78.27 |
| 6 | 400 | 91.03 | 149.77 |
Table 10 Crosslinking density of cured P1-25 and P2-15 after holding at different temperatures for 10 min
| 序号 | 处理温度/℃ | 交联密度/(10-5, mol·cm-3) | |
|---|---|---|---|
| P1-25 | P2-15 | ||
| 1 | 25 | 7.24 | 6.58 |
| 2 | 200 | 11.13 | 12.55 |
| 3 | 250 | 19.21 | 21.19 |
| 4 | 300 | 23.56 | 35.12 |
| 5 | 350 | 55.97 | 78.27 |
| 6 | 400 | 91.03 | 149.77 |
| 老化时间/h | 聚合物 | 质量变化率/% | 硬度变化 | 拉伸强度/MPa | 拉伸强度变化率/% | 断裂伸长率/% | 断裂伸长率变化率/% |
|---|---|---|---|---|---|---|---|
| 48 | P1-0 | -3 | +2 | 1.01 | +12 | 331 | -11 |
| P1-25 | -7 | +3 | 0.89 | +16 | 255 | -15 | |
| P1-45 | -8 | +5 | 1.12 | +16 | 283 | -16 | |
| P1-65 | -8 | +6 | 1.09 | +14 | 278 | -14 | |
| P1-85 | -4 | +15 | 1.21 | +28 | 224 | -26 | |
| P2-15 | -2 | +1 | 1.36 | +9 | 367 | -9 | |
| P2-25 | -2 | 0 | 1.45 | +8 | 378 | -11 | |
| P2-35 | -1 | +1 | 1.59 | +9 | 423 | -6 | |
| P2-45 | -1 | +1 | 1.63 | +8 | 461 | -5 | |
| 96 | P1-0 | -5 | +3 | 1.07 | +19 | 318 | -15 |
| P1-25 | -12 | +4 | 0.91 | +30 | 242 | -20 | |
| P1-45 | -15 | +5 | 1.20 | +30 | 277 | -18 | |
| P1-65 | -12 | +6 | 1.15 | +22 | 265 | -18 | |
| P1-85 | -11 | +16 | 1.31 | +52 | 214 | -32 | |
| P2-15 | -2 | +1 | 1.39 | +11 | 359 | -11 | |
| P2-25 | -2 | +1 | 1.47 | +10 | 372 | -13 | |
| P2-35 | -2 | +2 | 1.61 | +10 | 411 | -9 | |
| P2-45 | -2 | +1 | 1.66 | +10 | 456 | -6 | |
| 144 | P1-0 | -5 | +3 | 1.08 | +20 | 315 | -16 |
| P1-25 | -13 | +5 | 0.93 | +26 | 239 | -21 | |
| P1-45 | -15 | +5 | 1.21 | +32 | 276 | -18 | |
| P1-65 | -13 | +7 | 1.17 | +24 | 261 | -20 | |
| P1-85 | -15 | +17 | 1.35 | +57 | 202 | -35 | |
| P2-15 | -3 | +2 | 1.41 | +13 | 355 | -12 | |
| P2-25 | -4 | +3 | 1.52 | +13 | 370 | -13 | |
| P2-35 | -3 | +2 | 1.63 | +12 | 410 | -9 | |
| P2-45 | -3 | +2 | 1.70 | +12 | 450 | -7 |
Table 11 Mass loss and mechanical properties of P1 and P2 after thermal air aging
| 老化时间/h | 聚合物 | 质量变化率/% | 硬度变化 | 拉伸强度/MPa | 拉伸强度变化率/% | 断裂伸长率/% | 断裂伸长率变化率/% |
|---|---|---|---|---|---|---|---|
| 48 | P1-0 | -3 | +2 | 1.01 | +12 | 331 | -11 |
| P1-25 | -7 | +3 | 0.89 | +16 | 255 | -15 | |
| P1-45 | -8 | +5 | 1.12 | +16 | 283 | -16 | |
| P1-65 | -8 | +6 | 1.09 | +14 | 278 | -14 | |
| P1-85 | -4 | +15 | 1.21 | +28 | 224 | -26 | |
| P2-15 | -2 | +1 | 1.36 | +9 | 367 | -9 | |
| P2-25 | -2 | 0 | 1.45 | +8 | 378 | -11 | |
| P2-35 | -1 | +1 | 1.59 | +9 | 423 | -6 | |
| P2-45 | -1 | +1 | 1.63 | +8 | 461 | -5 | |
| 96 | P1-0 | -5 | +3 | 1.07 | +19 | 318 | -15 |
| P1-25 | -12 | +4 | 0.91 | +30 | 242 | -20 | |
| P1-45 | -15 | +5 | 1.20 | +30 | 277 | -18 | |
| P1-65 | -12 | +6 | 1.15 | +22 | 265 | -18 | |
| P1-85 | -11 | +16 | 1.31 | +52 | 214 | -32 | |
| P2-15 | -2 | +1 | 1.39 | +11 | 359 | -11 | |
| P2-25 | -2 | +1 | 1.47 | +10 | 372 | -13 | |
| P2-35 | -2 | +2 | 1.61 | +10 | 411 | -9 | |
| P2-45 | -2 | +1 | 1.66 | +10 | 456 | -6 | |
| 144 | P1-0 | -5 | +3 | 1.08 | +20 | 315 | -16 |
| P1-25 | -13 | +5 | 0.93 | +26 | 239 | -21 | |
| P1-45 | -15 | +5 | 1.21 | +32 | 276 | -18 | |
| P1-65 | -13 | +7 | 1.17 | +24 | 261 | -20 | |
| P1-85 | -15 | +17 | 1.35 | +57 | 202 | -35 | |
| P2-15 | -3 | +2 | 1.41 | +13 | 355 | -12 | |
| P2-25 | -4 | +3 | 1.52 | +13 | 370 | -13 | |
| P2-35 | -3 | +2 | 1.63 | +12 | 410 | -9 | |
| P2-45 | -3 | +2 | 1.70 | +12 | 450 | -7 |
| [1] | Yang X X, Li Q G, Li Z S, et al. Preparation and characterization of room-temperature-vulcanized silicone rubber using acrylpimaric acid-modified aminopropyltriethoxysilane as a cross-linking agent[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4964-4974. |
| [2] | Kumar V, Lee D J. Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber[J]. Journal of Applied Polymer Science, 2017, 134(4): 44407. |
| [3] | Zhou X Y, Wang G F, Wang M M, et al. A simple preparation method for superhydrophobic surface on silicon rubber and its properties[J]. Progress in Organic Coatings, 2020, 143: 105612. |
| [4] | Shimizu T, Kishi R, Kobashi K, et al. Improved thermal stability of silicone rubber nanocomposites with low filler content, achieved by well-dispersed carbon nanotubes[J]. Composites Communications, 2020, 22: 100482. |
| [5] | Wang G F, Li A L, Zhao W, et al. A review on fabrication methods and research progress of superhydrophobic silicone rubber materials[J]. Advanced Materials Interfaces, 2021, 8(1): 2001460. |
| [6] | 刘润竹, 储甜甜, 张孝阿, 等. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
| Liu R Z, Chu T T, Zhang X A, et al. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers[J]. CIESC Journal, 2023, 74(3): 1360-1369. | |
| [7] | Jovanovic J D, Govedarica M N, Dvornic P R, et al. The thermogravimetric analysis of some polysiloxanes[J]. Polymer Degradation and Stability, 1998, 61(1): 87-93. |
| [8] | Lauter U, Kantor S W, Schmidt-Rohr K, et al. Vinyl-substituted silphenylene siloxane copolymers: novel high-temperature elastomers[J]. Macromolecules, 1999, 32(10): 3426-3431. |
| [9] | Sheng M M, Yu J C, Gong H Y, et al. Enhancing the thermal stability and mechanical properties of phenyl silicone rubbers by controlling BN addition and phenyl content[J]. Composites Communications, 2022, 35: 101340. |
| [10] | Yilgör E, Yilgör I. Silicone containing copolymers: synthesis, properties and applications[J]. Progress in Polymer Science, 2014, 39(6): 1165-1195. |
| [11] | Shit S C, Shah P. A review on silicone rubber[J]. National Academy Science Letters, 2013, 36(4): 355-365. |
| [12] | Kang D W, Yeo H G, Lee K S. Preparation and characteristics of liquid silicone rubber nanocomposite containing ultrafine magnesium ferrite powder[J]. Journal of Inorganic and Organometallic Polymers, 2004, 14(1): 73-84. |
| [13] | Huang Y H, Mu Q H, Su Z T. High and low temperature resistance of phenyl silicone rubber[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1048(1): 012001. |
| [14] | Zhu H J, Dai Z L, Tu W P. Study on the preparation and performance of low gas permeability trifluoropropyl phenyl silicone rubber[J]. RSC Advances, 2017, 7(63): 39739-39747. |
| [15] | Qi M, Jia X Z, Wang G F, et al. Research on high temperature friction properties of PTFE/Fluorosilicone rubber/silicone rubber[J]. Polymer Testing, 2020, 91: 106817. |
| [16] | Gao C T, Zhang Z M, Li X D, et al. Synergistic effects in three-dimensional SnO2/TiO2/CdS multi-heterojunction structure for highly efficient photoelectrochemical hydrogen production[J]. Solar Energy Materials and Solar Cells, 2015, 141: 101-107. |
| [17] | Tariq Nazir M, Phung B T, Hoffman M, et al. Micro-AlN/nano-SiO2 co-filled silicone rubber composites with high thermal stability and excellent dielectric properties[J]. Materials Letters, 2017, 209: 421-424. |
| [18] | Pakaya F, Ardhyananta H, Wicaksono S T. Mechanical properties and thermal stability of epoxy/RTV silicone rubber[J]. IPTEK the Journal for Technology and Science, 2017, 28(1): 7. |
| [19] | Ochi M, Takemiya K, Kiyohara O, et al. Effect of the addition of aramid-silicone block copolymer on phase structure and toughness of cured epoxy resins modified with silicone[J]. Polymer, 1998, 39(3): 725-731. |
| [20] | Dong F Y, Lu H, Feng S Y, et al. Preparation and characterization of silicone rubber through the reaction between γ-chloropropyl and amino groups with siloxane polyamidoamine dendrimers as cross-linkers[J]. Polymers for Advanced Technologies, 2018, 29(2): 934-940. |
| [21] | Zhu L, Chen X, Shi R R, et al. Tetraphenylphenyl-modified damping additives for silicone rubber: experimental and molecular simulation investigation[J]. Materials & Design, 2021, 202: 109551. |
| [22] | Hayashida K, Tsuge S, Ohtani H. Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography[J]. Polymer, 2003, 44(19): 5611-5616. |
| [23] | Han R J, Quan X D, Shao Y R, et al. Tribological properties of phenyl-silicone rubber composites with nano-CeO2 and graphene underthermal-oxidative aging[J]. Applied Nanoscience, 2020, 10(7): 2129-2138. |
| [24] | Zhou W J, Yang H, Zhou J. The thermal degradation of bisphenol A polycarbonate containing methylphenyl–silicone additive[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 413-418. |
| [25] | Zhou W J, Yang H. Flame retarding mechanism of polycarbonate containing methylphenyl-silicone[J]. Thermochimica Acta, 2007, 452(1): 43-48. |
| [26] | Zlatanic A, Radojcic D, Wan X M, et al. Monitoring of the course of the silanolate-initiated polymerization of cyclic siloxanes. A mechanism for the copolymerization of dimethyl and diphenyl monomers[J]. Macromolecules, 2018, 51(3): 895-905. |
| [27] | Li Z X, Bai L, Zheng J P. Effect of π–π interaction between carbon nanotubes and phenyl groups on the thermal stability of silicone rubber[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 2503-2512. |
| [28] | He C, Li B Q, Ren Y, et al. How the crosslinking agent influences the thermal stability of RTV phenyl silicone rubber[J]. Materials, 2018, 12(1): 88. |
| [29] | Zhu H D, Kantor S W, MacKnight W J. Thermally stable silphenylene vinyl siloxane elastomers and their blends[J]. Macromolecules, 1998, 31(3): 850-856. |
| [30] | Fuqua S A, Silverstein R M. Phenylene-perfluoralkylene silicones[J]. Journal of Applied Polymer Science, 1964, 8(4): 1729-1735. |
| [31] | Ma X T, Zhang J A, Ma X Y, et al. Tetrafunctional vinyl polysilsesquioxane and its covalently cross-linked vinyl liquid silicone rubber for resistance to high temperature oxidation combustion and ablative behavior[J]. Corrosion Science, 2023, 221: 111315. |
| [32] | Che B, Wang A, Zhou C, et al. A novel family of silicone prepolymers containing p-silphenylene unit[J]. Acta Polymerica Sinica, 1997: 235-239. |
| [33] | Delebecq E, Hamdani-Devarennes S, Raeke J, et al. High residue contents indebted by platinum and silica synergistic action during the pyrolysis of silicone formulations[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 869-880. |
| [34] | Zhang W Z, Hu S K, Li H X, et al. Epoxidized vinyl silicone rubber-based flexible ablative material with low linear ablation rate[J]. Composites Communications, 2023, 40: 101606. |
| [35] | Jia M Q, Wu C B, Li W, et al. Synthesis and characterization of a silicone resin with silphenylene units in Si—O—Si backbones[J]. Journal of Applied Polymer Science, 2009, 114(2): 971-977. |
| [36] | Uehara H, Saitoh M, Morita R, et al. In situ NMR measurement of novel silicone elastomer obtained by cross-linking of silicones having phenylene backbone and hyperbranched molecular architectures[J]. Macromolecules, 2014, 47(3): 888-896. |
| [37] | Wu C B, Jin Y H, Li W, et al. Synthesis and characterization of a silicone resin with silphenylene units in Si—O—Si backbones II[J]. High Performance Polymers, 2010, 22(8): 959-973. |
| [38] | Grassie N, Beattie S R. The thermal degradation of polysiloxanes Part 7: Mechanism of degradation of poly(tetramethyl-p-silphenylene siloxane) and copolymers with dimethylsiloxane[J]. Polymer Degradation and Stability, 1984, 8(3): 177-193. |
| [39] | Zhu L, Cheng X, Su W L, et al. Molecular insights into sequence distributions and conformation-dependent properties of high-phenyl polysiloxanes[J]. Polymers, 2019, 11(12): 1989. |
| [40] | Hamdani S, Longuet C, Perrin D, et al. Flame retardancy of silicone-based materials[J]. Polymer Degradation and Stability, 2009, 94(4): 465-495. |
| [41] | Liu T, Sun C, Ma F G. Study on the synthesis and thermal degradation of vinylphenylpolysilsesquioxane[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 249-255. |
| [42] | Indulekha K, Thomas D, Supriya N, et al. Inherently flame retardant vinyl bearing hyperbranched polysiloxanes having improved thermal stability—ceramization and analysis of associated thermal properties[J]. Polymer Degradation and Stability, 2018, 147: 12-24. |
| [43] | Camino G, Lomakin S M, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects[J]. Polymer, 2001, 42(6): 2395-2402. |
| [44] | Sun J T, Huang Y D, Cao H L, et al. Effects of ambient-temperature curing agents on the thermal stability of poly(methylphenylsiloxane)[J]. Polymer Degradation and Stability, 2004, 85(1): 725-731. |
| [45] | Yang Z Z, Han S, Zhang R, et al. Effects of silphenylene units on the thermal stability of silicone resins[J]. Polymer Degradation and Stability, 2011, 96(12): 2145-2151. |
| [1] | Wenhao SUN, Jun TIAN, Kun ZHANG, Na LIU, Baosen CAO, Xiaoqiang LIANG. New development of novel separators with high thermal stability for lithium-ion batteries [J]. CIESC Journal, 2025, 76(6): 2524-2543. |
| [2] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
| [3] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
| [4] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
| [5] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
| [6] | GAO Jianchen, ZHAO Bingchen, HE Feng, LI Tingxian. Preparation and investigation of the thermal charging and discharging of modified magnesium nitrate hexahydrate composite phase change material [J]. CIESC Journal, 2021, 72(6): 3328-3337. |
| [7] | WEI Xiaolan, XIE Pei, WANG Weilong, LU Jianfeng, DING Jing. Calculation of phase diagram and thermal stability of molten salt for ternary chloride systems containing calcium [J]. CIESC Journal, 2021, 72(6): 3074-3083. |
| [8] | XIN Mudi, XING Enhui. Researches on trimethylphosphine and metal oxide modification on ZSM-5 and their influence on catalytic cracking [J]. CIESC Journal, 2021, 72(5): 2657-2668. |
| [9] | ZHANG Rui, SHAO Qi, ZHANG Huayu, JIN Zelong, ZHANG Xiaoliang. Fabrication of boron-doped hybrid silica membranes for pervaporation desalination [J]. CIESC Journal, 2021, 72(4): 2317-2327. |
| [10] | Wenbo ZHANG, Ziye LING, Xiaoming FANG, Zhengguo ZHANG. Preparation and thermal properties research of a novel magnesium chloride hexahydrate-magnesium nitrate hexahydrate/graphite phase carbon nitride composite phase change material [J]. CIESC Journal, 2021, 72(12): 6399-6406. |
| [11] | Xiaolan WEI, Pei XIE, Xuechuan ZHANG, Weilong WANG, Jianfeng LU, Jing DING. Research on preparation and thermodynamic properties of chloride molten salt materials [J]. CIESC Journal, 2020, 71(5): 2423-2431. |
| [12] | YANG Runnong,YU Lin,ZHAO Xiangyun,YANG Xiaobo,GAO Zihan,FU Guangying,JIANG Jiuxing,LIAN Weilin,LIU Wuyuan,FAN Qun. Phi zeolite synthesized by template-free method for selective catalytic reduction of NO [J]. CIESC Journal, 2020, 71(12): 5578-5588. |
| [13] | Jianxin MAO, Ziqing YUAN, Hongxiao YANG, Renxian ZHOU. Effects of Sm addition on reactivity and thermal stability of Pt/SBA-15 for catalytic complete oxidation of benzene [J]. CIESC Journal, 2020, 71(1): 306-313. |
| [14] | Baicen ZHAO, Jing DING, Xiaolan WEI, Bin LIU, Jianfeng LU, Weilong WANG. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system [J]. CIESC Journal, 2019, 70(6): 2083-2091. |
| [15] | WU Dongling, LI Tingxian, HE Feng, WANG Ruzhu. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage [J]. CIESC Journal, 2018, 69(7): 2860-2868. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||