CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2410-2418.DOI: 10.11949/0438-1157.20241208
• Separation engineering • Previous Articles
Dong GU1(
), Xingjian PI2, Die ZHANG2, Ying ZHANG2(
)
Received:2024-10-30
Revised:2025-02-04
Online:2025-06-13
Published:2025-05-25
Contact:
Ying ZHANG
通讯作者:
张瑛
作者简介:顾栋(1983—),男,学士,高级工程师,108188933@qq.com
CLC Number:
Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes[J]. CIESC Journal, 2025, 76(5): 2410-2418.
顾栋, 皮行健, 张叠, 张瑛. 不同粒径CAU-1/PI混合基质膜的构建与H2/CO2分离性能研究[J]. 化工学报, 2025, 76(5): 2410-2418.
Add to citation manager EndNote|Ris|BibTeX
| Membrane | CAU-1 | PI/g | 亚酰胺化温度/℃ |
|---|---|---|---|
| M0 | — | 0.40 | 150 |
| M1 | — | 0.40 | 180 |
| M-30-150 | CAU-1-30,0.04 g | 0.36 | 150 |
| M-30-180 | CAU-1-30,0.04 g | 0.36 | 180 |
| M-40-180 | CAU-1-40,0.04 g | 0.36 | 180 |
| M-50-180 | CAU-1-50,0.04 g | 0.36 | 180 |
| M-60-180 | CAU-1-60,0.04 g | 0.36 | 180 |
Table 1 Synthesis scheme of pure PI membrane and CAU-1 mixed matrix membrane with different particle sizes
| Membrane | CAU-1 | PI/g | 亚酰胺化温度/℃ |
|---|---|---|---|
| M0 | — | 0.40 | 150 |
| M1 | — | 0.40 | 180 |
| M-30-150 | CAU-1-30,0.04 g | 0.36 | 150 |
| M-30-180 | CAU-1-30,0.04 g | 0.36 | 180 |
| M-40-180 | CAU-1-40,0.04 g | 0.36 | 180 |
| M-50-180 | CAU-1-50,0.04 g | 0.36 | 180 |
| M-60-180 | CAU-1-60,0.04 g | 0.36 | 180 |
Fig.8 (a)H2 and CO2 permeability and H2/CO2 selectivity of pure PI and mixed matrix membranes;(b) Evaluation of the performance stability of M-40-180 at 25 ℃ and 1.5×105 Pa
| 基体 | 填料及含量/%(质量) | H2渗透性/Barrer | H2/CO2选择性 | 温度T/℃ | 文献 |
|---|---|---|---|---|---|
| Matrimid®5218 | Zeolite 4A, 10 | 28.2 | 2.2 | 30 | [ |
| PBI | ZIF-7, 50 | 26.2 | 14.9 | 35 | [ |
| ZIF-8, 30 | 82.5 | 12.0 | 35 | [ | |
| ZIF-8, 60 | 1749.9 | 4.1 | 35 | [ | |
| ZIF-11, 39.5 | 464.7 | 3.6 | 25 | [ | |
| ZIF-90, 45 | 24.5 | 25 | 35 | [ | |
| Matrimid® | ZIF-8, 20 | 32 | 3.5 | 25 | [ |
| 6FDA-durene | ZIF-8, 33.3 | 2136 | 1.4 | 35 | [ |
| Polyimides | ZSM-5 | 1268 | 1.3 | 35 | [ |
| Cu(BTC)2, 3/6 | — | 18/27.8 | 25 | [ | |
| PMMA | CAU-1, 15 | 11000 | 13 | 25 | [ |
| PES | SAPO-34, 20 | 12.57 | 2.45 | 30 | [ |
| M-40-180 | CAU-1, 10 | 460.0 | 8.4 | 25 | 本文 |
| M-50-180 | CAU-1, 10 | 501.1 | 7.0 | 25 | 本文 |
Table 2 H2/CO2 separation performance of MOF-based mixed matrix membranes reported in the literature(atmospheric pressure)
| 基体 | 填料及含量/%(质量) | H2渗透性/Barrer | H2/CO2选择性 | 温度T/℃ | 文献 |
|---|---|---|---|---|---|
| Matrimid®5218 | Zeolite 4A, 10 | 28.2 | 2.2 | 30 | [ |
| PBI | ZIF-7, 50 | 26.2 | 14.9 | 35 | [ |
| ZIF-8, 30 | 82.5 | 12.0 | 35 | [ | |
| ZIF-8, 60 | 1749.9 | 4.1 | 35 | [ | |
| ZIF-11, 39.5 | 464.7 | 3.6 | 25 | [ | |
| ZIF-90, 45 | 24.5 | 25 | 35 | [ | |
| Matrimid® | ZIF-8, 20 | 32 | 3.5 | 25 | [ |
| 6FDA-durene | ZIF-8, 33.3 | 2136 | 1.4 | 35 | [ |
| Polyimides | ZSM-5 | 1268 | 1.3 | 35 | [ |
| Cu(BTC)2, 3/6 | — | 18/27.8 | 25 | [ | |
| PMMA | CAU-1, 15 | 11000 | 13 | 25 | [ |
| PES | SAPO-34, 20 | 12.57 | 2.45 | 30 | [ |
| M-40-180 | CAU-1, 10 | 460.0 | 8.4 | 25 | 本文 |
| M-50-180 | CAU-1, 10 | 501.1 | 7.0 | 25 | 本文 |
| 1 | Sazali N. A review of the application of carbon-based membranes to hydrogen separation[J]. Journal of Materials Science, 2020, 55(25): 11052-11070. |
| 2 | Mao D L, Griffin J M, Dawson R, et al. Metal organic frameworks for hydrogen purification[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23380-23405. |
| 3 | Sidney L, Sriniva S, Weaver D E. High flow porous membranes for separating water from saline solutions: US3133137A[P]. 1964-05-12. |
| 4 | Stern S A, Mullhaupt J T, Gareis P J. The effect of pressure on the permeation of gases and vapors through polyethylene. Usefulness of the corresponding states principle[J]. AIChE Journal, 1969, 15(1): 64-73. |
| 5 | Guo H, Liu J Q, Li Y H, et al. Post-synthetic modification of highly stable UiO-66-NH2 membranes on porous ceramic tubes with enhanced H2 separation[J]. Microporous and Mesoporous Materials, 2021, 313: 110823. |
| 6 | Li P Y, Wang Z, Qiao Z H, et al. Recent developments in membranes for efficient hydrogen purification[J]. Journal of Membrane Science, 2015, 495: 130-168. |
| 7 | Al-Rowaili F N, Khaled M, Jamal A, et al. Mixed matrix membranes for H2/CO2 gas separation—a critical review[J]. Fuel, 2023, 333: 126285. |
| 8 | Wang S F, Li X Q, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
| 9 | Butler J A V. (1) Rational approach to chemical principles (2) the elements of physical chemistry (3) physical chemistry (4) physical chemistry[J]. Nature, 1948, 162: 125-126. |
| 10 | Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3[TMA]2(H2O)3] n [J]. Science, 1999, 283(5405): 1148-1150. |
| 11 | Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
| 12 | Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20637-20640. |
| 13 | Valenzano L, Civalleri B, Chavan S, et al. Computational and experimental studies on the adsorption of CO, N2, and CO2 on Mg-MOF-74[J]. The Journal of Physical Chemistry C, 2010, 114(25): 11185-11191. |
| 14 | Song Y Y, He M G, Zhao J, et al. Structural manipulation of ZIF-8-based membranes for high-efficiency molecular separation[J]. Separation and Purification Technology, 2021, 270: 118722. |
| 15 | Guan W X, Dai Y, Dong C Y, et al. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: a review[J]. Journal of Applied Polymer Science, 2020, 137(33): 48968. |
| 16 | Li Y S, Liang F Y, Bux H, et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation[J]. Journal of Membrane Science, 2010, 354(1/2): 48-54. |
| 17 | Kumar S, Jain S, Nehra M, et al. Green synthesis of metal-organic frameworks: a state-of-the-art review of potential environmental and medical applications[J]. Coordination Chemistry Reviews, 2020, 420: 213407. |
| 18 | Kandiah M, Nilsen M H, Usseglio S, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640. |
| 19 | Japip S, Liao K S, Chung T S. Molecularly tuned free volume of vapor cross-linked 6FDA-durene/ZIF-71 MMMs for H2/CO2 separation at 150℃[J]. Advanced Materials, 2017, 29(4): 1603833. |
| 20 | Klepić M, Setničková K, Lanč M, et al. Permeation and sorption properties of CO2-selective blend membranes based on polyvinyl alcohol (PVA) and 1-ethyl-3-methylimidazolium dicyanamide ([EMIM] [DCA]) ionic liquid for effective CO2/H2 separation[J]. Journal of Membrane Science, 2020, 597: 117623. |
| 21 | Li Y S, Liang F Y, Bux H, et al. Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity[J]. Angewandte Chemie International Edition, 2010, 49(3): 548-551. |
| 22 | Cao L J, Tao K, Huang A S, et al. A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation[J]. Chemical Communications, 2013, 49(76): 8513-8515. |
| 23 | Jia Y, Liu P X, Liu Y B, et al. In-situ interfacial crosslinking of NH2-MIL-53 and polyimide in MOF-incorporated mixed matrix membranes for efficient H2 purification[J]. Fuel, 2023, 339:126938. |
| 24 | Ahmad J, Hägg M B. Development of matrimid/zeolite 4A mixed matrix membranes using low boiling point solvent[J]. Separation and Purification Technology, 2013, 115: 190-197. |
| 25 | Yang T X, Xiao Y C, Chung T S. Poly-/ metal-benzimidazole nano-composite membranes for hydrogen purification[J]. Energy & Environmental Science, 2011, 4(10): 4171-4180. |
| 26 | Yang T X, Chung T S. High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor[J]. International Journal of Hydrogen Energy, 2013, 38(1): 229-239. |
| 27 | Yang T X, Shi G M, Chung T S. Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures[J]. Advanced Energy Materials, 2012, 2(11): 1358-1367. |
| 28 | Li L X, Yao J F, Wang X J, et al. ZIF-11/Polybenzimidazole composite membrane with improved hydrogen separation performance[J]. Journal of Applied Polymer Science, 2014, 131(22): 41056. |
| 29 | Yang T X, Chung T S. Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation[J]. Journal of Materials Chemistry A, 2013, 1(19): 6081-6090. |
| 30 | Ordoñez M J C, Balkus K J, Ferraris J P, et al. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes[J]. Journal of Membrane Science, 2010, 361(1/2): 28-37. |
| 31 | Wijenayake S N, Panapitiya N P, Versteeg S H, et al. Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation[J]. Industrial & Engineering Chemistry Research, 2013, 52(21): 6991-7001. |
| 32 | Kanehashi S, Gu H, Shindo R, et al. Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane[J]. Journal of Applied Polymer Science, 2013, 128(6): 3814-3823. |
| 33 | Hu J, Cai H P, Ren H Q, et al. Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption[J]. Industrial & Engineering Chemistry Research, 2010, 49(24): 12605-12612. |
| 34 | Karatay E, Kalıpçılar H, Yılmaz L. Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes[J]. Journal of Membrane Science, 2010, 364(1/2): 75-81. |
| [1] | Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications [J]. CIESC Journal, 2025, 76(5): 2042-2054. |
| [2] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [3] | Ben’an CAI, Jianxin ZHANG, Chengjun LONG, Qiaochen DU, Xunjian CHE, Yiying ZHANG, Weihua CAI. Spray flash evaporation preparation of micro/nanoparticles [J]. CIESC Journal, 2025, 76(3): 1334-1345. |
| [4] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
| [5] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
| [6] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
| [7] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
| [8] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
| [9] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
| [10] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
| [11] | Renhua PEI, Yonghong WANG, Xinru ZHANG, Jinping LI. Synergistic of carbon nanotube/cyclodextrin metal organic framework for enhancing CO2 separation of mixed matrix membranes [J]. CIESC Journal, 2022, 73(9): 3904-3914. |
| [12] | Feng LIU, Quan WANG, Panyu WU, Guo WEI, Xiang HE. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix [J]. CIESC Journal, 2022, 73(9): 4217-4225. |
| [13] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
| [14] | Zhemiao YU, Zhi WANG, Menglong SHENG, Guangyu XING, Jixiao WANG. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization [J]. CIESC Journal, 2022, 73(7): 3273-3286. |
| [15] | Liwei WANG, Juanjuan WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Gas transport properties of PVAm-based mixed matrix membranes by incorporating with Cu3(BTC)2-MMT-NH2 [J]. CIESC Journal, 2022, 73(7): 3068-3077. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||