CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 363-373.DOI: 10.11949/0438-1157.20240986
• Energy and environmental engineering • Previous Articles Next Articles
Siwen ZHANG(), Haiming GU, Shanhui ZHAO(
)
Received:
2024-09-02
Revised:
2024-10-24
Online:
2025-02-08
Published:
2025-01-25
Contact:
Shanhui ZHAO
通讯作者:
赵善辉
作者简介:
张思文(1987—),女,博士,讲师,zhangsiwen@njit.edu.cn
基金资助:
CLC Number:
Siwen ZHANG, Haiming GU, Shanhui ZHAO. Molecular mechanism study on chemical looping gasification of cellulose over iron oxide nanocluster[J]. CIESC Journal, 2025, 76(1): 363-373.
张思文, 顾海明, 赵善辉. 纳米氧化铁对纤维素化学链气化的分子反应机理[J]. 化工学报, 2025, 76(1): 363-373.
1 | Hren R, Vujanović A, van Fan Y, et al. Hydrogen production, storage and transport for renewable energy and chemicals: an environmental footprint assessment[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113113. |
2 | Lee J, Kim S, You S M, et al. Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113240. |
3 | Kalak T. Potential use of industrial biomass waste as a sustainable energy source in the future[J]. Energies, 2023, 16(4): 1783. |
4 | 张会岩, 杨海平, 陆强, 等. 生物质定向热解制取高品质液体燃料、化学品和碳材料研究进展[J]. 工程热物理学报, 2021, 42(12): 3031-3044. |
Zhang H Y, Yang H P, Lu Q, et al. Progress of directional pyrolysis of biomass to produce high-quality liquid fuels, chemicals and carbon materials[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3031-3044. | |
5 | Cortazar M, Santamaria L, Lopez G, et al. A comprehensive review of primary strategies for tar removal in biomass gasification[J]. Energy Conversion and Management, 2023, 276: 116496. |
6 | Faizan M, Song H. Critical review on catalytic biomass gasification: state-of-art progress, technical challenges, and perspectives in future development[J]. Journal of Cleaner Production, 2023, 408: 137224. |
7 | Nguyen N M, Alobaid F, Dieringer P, et al. Biomass-based chemical looping gasification: overview and recent developments[J]. Applied Sciences, 2021, 11(15): 7069. |
8 | 郭万军, 葛晖骏, 沈来宏, 等. 基于铁矿石载氧体25 kWth串行流化床生物质化学链气化实验研究[J]. 热科学与技术, 2017, 16(1): 78-86. |
Guo W J, Ge H J, Shen L H, et al. Experimental study on chemical looping gasification of biomass with hematite base on 25 kWth fluidized beds[J]. Journal of Thermal Science and Technology, 2017, 16(1): 78-86. | |
9 | Ge H J, Shen L H, Feng F, et al. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor[J]. Applied Thermal Engineering, 2015, 85: 52-60. |
10 | Wang S, Wu F, Wang X D. Experimental and kinetics analysis on biomass chemical looping gasification using lean iron ore as oxygen carrier[J]. Chemical Engineering Journal, 2023, 474: 145855. |
11 | Zhen H, Wang Y H, Fang S W, et al. Chemical looping gasification of benzene as a biomass tar model compound using hematite modified by Ni as an oxygen carrier[J]. Applications in Energy and Combustion Science, 2023, 15: 100172. |
12 | Guan Y, Liu Y H, Wang B, et al. Reaction characteristics and lattice oxygen transformation mechanism of semi-coke chemical looping gasification with Fe2O3/CaSO4-Al2O3 oxygen carrier[J]. Journal of Cleaner Production, 2022, 369: 133291. |
13 | Sun R, Xiao Y, Yan J C, et al. Mechanism study on the high-performance BaFe2O4 during chemical looping gasification[J]. Fuel, 2022, 307: 121847. |
14 | Li Z Y, Dong X S, Yan B B, et al. Chemical looping gasification of digestate: investigation on the surface and lattice oxygen of perovskite oxygen carrier[J]. Fuel, 2022, 318: 123663. |
15 | Guo W Q, Wu J B, Meng L L, et al. Reactive behaviors and mechanisms of cellulose in chemical looping combustions with iron-based oxygen carriers: an experimental combined with ReaxFF MD study[J]. Applications in Energy and Combustion Science, 2023, 14: 100135. |
16 | Tang G Y, Gu J, Wei G Q, et al. Syngas production from cellulose solid waste by enhanced chemical looping gasification using Ca-Fe bimetallic oxygen carrier with porous structure[J]. Fuel, 2022, 322: 124106. |
17 | 钱琳, 赵南锦, 薛金凯, 等. 生物质焦油模化物的热裂解ReaxFF模拟研究[J]. 化学工程, 2024, 52(3): 66-71. |
Qian L, Zhao N J, Xue J K, et al. Simulation on thermal decomposition of biomass tar model compounds by ReaxFF[J]. Chemical Engineering(China), 2024, 52(3): 66-71. | |
18 | Chen J W, Wang C X, Shang W X, et al. Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation[J]. Energy, 2023, 278: 127900. |
19 | 郭文倩, 蒙亮亮, 耿畅, 等. 铁基载氧体纤维素化学链解聚试验及分子模拟[J]. 洁净煤技术, 2023, 29(4): 137-147. |
Guo W Q, Meng L L, Geng C, et al. Experiment and molecular simulation of cellulose during chemical looping depolymerization with iron-based oxygen carriers[J]. Clean Coal Technology, 2023, 29(4): 137-147. | |
20 | Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. NPJ Computational Materials, 2016, 2: 15011. |
21 | Duin A C, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
22 | Sun C C. True density of microcrystalline cellulose[J]. Journal of Pharmaceutical Sciences, 2005, 94(10): 2132-2134. |
23 | Hu B, Zhang W M, Zhang B, et al. Role of glycosidic bond in initial cellulose pyrolysis: investigation by machine learning simulation[J]. Applications in Energy and Combustion Science, 2022, 9: 100055. |
24 | Zheng Y X, Hong S, Psofogiannakis G, et al. Modeling and in situ probing of surface reactions in atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15848-15856. |
25 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
26 | Dai G X, Wang K G, Wang G Y, et al. Initial pyrolysis mechanism of cellulose revealed by in situ DRIFT analysis and theoretical calculation[J]. Combustion and Flame, 2019, 208: 273-280. |
27 | Zhao S H, Luo Y H, Zhang Y L, et al. Experimental investigation of rice straw and model compounds oxidative pyrolysis by in-situ DRIFT and coupled TG-DSC/MS method[J]. Energy Fuels, 2015, 29(7): 4361-4372. |
28 | Tang G Y, Gu J, Huang Z, et al. Cellulose gasification with Ca-Fe oxygen carrier in chemical-looping process[J]. Energy, 2022, 239: 122204. |
29 | Hong D K, Cao Z, Guo X. Effect of calcium on the secondary reactions of tar from Zhundong coal pyrolysis: a molecular dynamics simulation using ReaxFF[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 246-252. |
30 | Khanh B T H L, Hoang V V, Zung H. Structural properties of amorphous Fe2O3 nanoparticles[J]. The European Physical Journal D, 2008, 49(3): 325-332. |
31 | Cheng Q, Conejo A N, Wang Y Z, et al. Adsorption properties of hydrogen with iron oxides (FeO, Fe2O3): a ReaxFF molecular dynamics study[J]. Computational Materials Science, 2023, 218: 111926. |
32 | Wu Z Q, Zhang B, Wu S, et al. Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier: products distribution and kinetic analysis on gaseous products from cellulose[J]. Fuel Processing Technology, 2019, 193: 361-371. |
33 | Simmons G M, Gentry M. Kinetic formation of CO, CO2, H2, and light hydrocarbon gases from cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1986, 10(2): 129-138. |
34 | Liu C, Huang J B, Huang X L, et al. Theoretical studies on formation mechanisms of CO and CO2 in cellulose pyrolysis[J]. Computational and Theoretical Chemistry, 2011, 964(1/2/3): 207-212. |
35 | 张金鹏, 王强, 王艳美, 等. 镍基载氧体化学链燃烧过程中宁夏QH和YCW煤分子结构演化特征及对比分析[J]. 化工学报, 2023, 74(10): 4252-4266. |
Zhang J P, Wang Q, Wang Y M, et al. Molecular structure evolution characteristics and comparative analysis of Ningxia QH and YCW coal with nickel based oxygen carriers during chemical looping combustion[J]. CIESC Journal, 2023, 74(10): 4252-4266. | |
36 | Banyasz J L, Li S, Lyons-Hart J, et al. Gas evolution and the mechanism of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1757-1763. |
37 | Maduskar S, Maliekkal V, Neurock M, et al. On the yield of levoglucosan from cellulose pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 7017-7025. |
38 | Zhang X L, Yang W H, Dong C Q. Levoglucosan formation mechanisms during cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 19-27. |
39 | Xu J H, Zhu L Y. Molecular mechanism study of the kinetics and product yields during copyrolysis of biomass and solid wastes: ReaxFF-MD method approach[J]. ACS Omega, 2023, 8(39): 36126-36135. |
40 | 何笑, 刘晶晶, 李文瑶, 等. 玉米秸秆化学链热解过程铁基复合载氧体的载氧-催化性能[J]. 化工学报, 2023, 74(10): 4153-4163. |
He X, Liu J J, Li W Y, et al. Oxygen-carrying and catalytic properties of iron-based composite oxygen carrier for chemical looping pyrolysis of corn stalk[J]. CIESC Journal, 2023, 74(10): 4153-4163. |
[1] | Jijun ZOU, Baohong LIU, Chengxiang SHI, Lun PAN, Xiangwen ZHANG. Research progress of heterogeneous catalysts for conversion of holocellulose derivatives into bio-aviation fuels [J]. CIESC Journal, 2025, 76(1): 1-17. |
[2] | Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles [J]. CIESC Journal, 2024, 75(S1): 143-157. |
[3] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
[4] | Wuling ZHAO, Yi MAN. Research on framework of nanocellulose molecular structure prediction model based on variational encoder [J]. CIESC Journal, 2024, 75(9): 3221-3230. |
[5] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[6] | Yongqi TONG, Jie CHENG, Hai LIN, Xi CHEN, Haibo ZHAO. CPFD simulation of a 10 MWth chemical looping combustion reactor [J]. CIESC Journal, 2024, 75(8): 2949-2959. |
[7] | Shuaiqi ZHAO, Rui ZHANG, Han HUANG, Kunpeng ZHAO, Bofeng BAI. Inhibition of water-gas shift reaction on coal gasification in supercritical water [J]. CIESC Journal, 2024, 75(8): 2960-2969. |
[8] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[9] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[10] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[11] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
[12] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[13] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[14] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[15] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||