CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5486-5494.DOI: 10.11949/0438-1157.20250254
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zhenghao FEI1(
), Xiuzhi YANG2, Zongtang LIU1, Xinlong SHA1(
)
Received:2025-03-14
Revised:2025-04-25
Online:2025-11-25
Published:2025-10-25
Contact:
Zhenghao FEI, Xinlong SHA
嗪树脂的制备及耐热性能研究
通讯作者:
费正皓,沙新龙
作者简介:费正皓(1972—),男,博士,教授,feizhenghao@163.com
基金资助:CLC Number:
Zhenghao FEI, Xiuzhi YANG, Zongtang LIU, Xinlong SHA. Preparation and heat resistance of cyanide-derived benzoxazine resins[J]. CIESC Journal, 2025, 76(10): 5486-5494.
费正皓, 杨秀芝, 刘总堂, 沙新龙. 氰基衍生苯并
嗪树脂的制备及耐热性能研究[J]. 化工学报, 2025, 76(10): 5486-5494.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 单体结构式 | Tg/℃ | Tdi/℃ | YC/% | HRC/(J·g-1·K-1) | THR/(kJ·g-1) |
|---|---|---|---|---|---|---|
| poly(PH-a) | ![]() | 133 | 292 | 38 | 118 | 13.5 |
| poly(GU-fa) | ![]() | — | 320 | 56 | 70.6 | 6.5 |
| poly(HN-fa) | ![]() | 247 | 338 | 63.2 | 50.6 | 10.3 |
| poly(VN-fa) | ![]() | 189 | 313 | 64.7 | 62.0 | 11.1 |
| poly(V-fa) | ![]() | — | 293 | 56.1 | 132.2 | 6.9 |
Table 1 Thermal stability and heat release properties of poly(HN-fa), poly(VN-fa) and typical benzoxazine resins
| 样品 | 单体结构式 | Tg/℃ | Tdi/℃ | YC/% | HRC/(J·g-1·K-1) | THR/(kJ·g-1) |
|---|---|---|---|---|---|---|
| poly(PH-a) | ![]() | 133 | 292 | 38 | 118 | 13.5 |
| poly(GU-fa) | ![]() | — | 320 | 56 | 70.6 | 6.5 |
| poly(HN-fa) | ![]() | 247 | 338 | 63.2 | 50.6 | 10.3 |
| poly(VN-fa) | ![]() | 189 | 313 | 64.7 | 62.0 | 11.1 |
| poly(V-fa) | ![]() | — | 293 | 56.1 | 132.2 | 6.9 |
| [1] | Zhang C Q, Xue J Q, Yang X Y, et al. From plant phenols to novel bio-based polymers[J]. Progress in Polymer Science, 2022, 125: 101473. |
| [2] | Adjaoud A, Marcolini B, Dieden R, et al. Deciphering the self-catalytic mechanisms of polymerization and transesterification in polybenzoxazine vitrimers[J]. Journal of the American Chemical Society, 2024, 146(19): 13367-13376. |
| [3] | Zhang S J, Yi J J, Chen J M, et al. Weldable, reprocessable, and water-resistant polybenzoxazine vitrimer crosslinked by dynamic imine bonds[J]. ChemSusChem, 2024, 17(14): e202301708. |
| [4] | Yang M Y, Wang T C, Tian Y Z, et al. Nature's empowerment: unraveling superior performance and green degradation closed-loop in self-curing fully bio-based benzoxazines[J]. Green Chemistry, 2024, 26(8): 4771-4784. |
| [5] | Li N, Yang S F, Zhang K. Thiophene-rich benzoxazines with an amide moiety: integration of structural and hydrogen bonding influence on the polymerization mechanism by experimental and computational studies[J]. Macromolecules, 2023, 56(17): 6667-6678. |
| [6] | Zhou X, Shen M G, Fu F, et al. High strength, self-healing and hydrophobic fully bio-based polybenzoxazine reinforced pine oleoresin-based vitrimer and its application in carbon fiber reinforced polymers[J]. Chemical Engineering Journal, 2024, 484: 149585. |
| [7] | Yadav S, Amarnath N, et al. Advancing renewable amines: furan-derived polybenzoxazines[J]. ACS Applied Polymer Materials, 2024, 6(24): 15281-15292. |
| [8] | Seychal G, Van Renterghem L, Ocando C, et al. Towards sustainable reprocessable structural composites: Benzoxazines as biobased matrices for natural fibers[J]. Composites Part B: Engineering, 2024, 272: 111201. |
| [9] | Madesh P, Krishnasamy B, Arumugam H, et al. Bio-based benzoxazine composites derived from magnolol: promising solution for sustainable alternatives for dielectric and superhydrophobic applications[J]. Polymer Composites, 2024, 45(8): 7137-7149. |
| [10] | Yang R, Li N, Evans C J, et al. Phosphaphenanthrene-functionalized benzoxazines bearing intramolecularly hydrogen-bonded phenolic hydroxyl: synthesis, structural characterization, polymerization mechanism, and property investigation[J]. Macromolecules, 2023, 56(4): 1311-1323. |
| [11] | Mohamed Mydeen K, Krishnasamy B, Arumugam H, et al. Sustainable strategies for fully biobased polybenzoxazine composites from trifunctional thymol and biocarbons: advancements in high-dielectric and antibacterial corrosion implementations[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(6): 2225-2240. |
| [12] | Mohamed Mydeen K, Arumugam H, Krishnasamy B, et al. Nonylphenol-based polybenzoxazine composites: hydrophobic coating, ultra-low-k and anticorrosion applications[J]. Journal of Materials Science, 2023, 58(25): 10340-10358. |
| [13] | Lochab B, Monisha M, Amarnath N, et al. Review on the accelerated and low-temperature polymerization of benzoxazine resins: addition polymerizable sustainable polymers[J]. Polymers, 2021, 13(8): 1260. |
| [14] | Zhang K, Yu X Y, Wang Y T, et al. Thermally activated structural changes of a norbornene-benzoxazine-phthalonitrile thermosetting system: simple synthesis, self-catalyzed polymerization, and outstanding flame retardancy[J]. ACS Applied Polymer Materials, 2019, 1(10): 2713-2722. |
| [15] | Ren D X, Xu M Z, Chen S J, et al. Curing reaction and properties of a kind of fluorinated phthalonitrile containing benzoxazine[J]. European Polymer Journal, 2021, 159: 110715. |
| [16] | Wang T, Shi C Y, Qadeer Dayo A, et al. Synthesis and properties of novel self-catalytic phthalonitrile monomers with aliphatic chain and their copolymerization with multi-functional fluorene-based benzoxazine monomers[J]. European Polymer Journal, 2021, 161: 110862. |
| [17] | Chen Y P, Dayo A Q, Zhang H Y, et al. Synthesis of cardanol-based phthalonitrile monomer and its copolymerization with phenol–aniline-based benzoxazine[J]. Journal of Applied Polymer Science, 2019, 136(20): 47505. |
| [18] | Dayo A Q, Wang A R, Derradji M, et al. Copolymerization of mono and difunctional benzoxazine monomers with bio-based phthalonitrile monomer: curing behaviour, thermal, and mechanical properties[J]. Reactive and Functional Polymers, 2018, 131: 156-163. |
| [19] | Bonjour O, Nederstedt H, Arcos-Hernandez M V, et al. Lignin-inspired polymers with high glass transition temperature and solvent resistance from 4-hydroxybenzonitrile, vanillonitrile, and syringonitrile methacrylates[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(50): 16874-16880. |
| [20] | 郑杰元, 张先伟, 万金涛, 等. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
| Zheng J Y, Zhang X W, Wan J T, et al. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin[J]. CIESC Journal, 2023, 74(2): 924-932. | |
| [21] | Andreu R, Reina J A, Ronda J C. Studies on the thermal polymerization of substituted benzoxazine monomers: electronic effects[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(10): 3353-3366. |
| [22] | Sini N K, Bijwe J, Varma I K. Renewable benzoxazine monomer from vanillin: synthesis, characterization, and studies on curing behavior[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52(1): 7-11. |
| [23] | Guan L J, Guo Z Q, Zhou Q, et al. A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis[J]. Nature Communications, 2023, 14(1): 8114. |
| [24] | Xu M Z, Ren D X, Chen L, et al. Understanding of the polymerization mechanism of the phthalonitrile-based resins containing benzoxazine and their thermal stability[J]. Polymer, 2018, 143: 28-39. |
| [25] | Zhang S, Li Q S, Ye J J, et al. Probing the copolymerization of alkynyl and cyano groups using monocyclic benzoxazine as model compound[J]. Polymer, 2022, 252: 124932. |
| [26] | Lu Y, Yang Y, Wang J Q, et al. Development of intrinsically flame-retardant bio-thermosets with further enhanced thermal stability through a photo-thermal dual polymerization strategy[J]. Polymer Degradation and Stability, 2024, 229: 110948. |
| [27] | Lu Y, Liu J M, Zhao W Q, et al. Bio-benzoxazine structural design strategy toward highly thermally stable and intrinsically flame-retardant thermosets[J]. Chemical Engineering Journal, 2023, 457: 141232. |
| [28] | Muraoka M, Goto M, Minami M, et al. Ethynylene-linked multifunctional benzoxazines: the effect of the ethynylene group and packing on thermal behavior[J]. Polymer Chemistry, 2022, 13(39): 5590-5596. |
| [29] | 胡月, 马守骏, 蹇锡高, 等. 新型聚芳醚腈固化邻苯二甲腈树脂的研究[J]. 化工学报, 2023, 74(2): 871-882. |
| Hu Y, Ma S J, Jian X G. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile)[J]. CIESC Journal, 2023, 74(2): 871-882. | |
| [30] | Yang R, Han M C, Hao B R, et al. Biobased high-performance tri-furan functional bis-benzoxazine resin derived from renewable guaiacol, furfural and furfurylamine[J]. European Polymer Journal, 2020, 131: 109706. |
| [31] | Lu Y, Yu X Y, Evans C J, et al. Elucidating the role of acetylene in ortho-phthalimide functional benzoxazines: design, synthesis, and structure–property investigations[J]. Polymer Chemistry, 2021, 12(35): 5059-5068. |
| [32] | van Krevelen D W. Some basic aspects of flame resistance of polymeric materials[J]. Polymer, 1975, 16(8): 615-620. |
| [33] | Spontón M, Ronda J C, Galià M, et al. Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl)methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A[J]. Polymer Degradation and Stability, 2008, 93(12): 2158-2165. |
| [34] | Chen M J, Wang X, Tao M C, et al. Full substitution of petroleum-based polyols by phosphorus-containing soy-based polyols for fabricating highly flame-retardant polyisocyanurate foams[J]. Polymer Degradation and Stability, 2018, 154: 312-322. |
| [35] | Bourbigot S, Flambard X. Heat resistance and flammability of high performance fibres: a review[J]. Fire and Materials, 2002, 26(4/5): 155-168. |
| [36] | Walters R N, Lyon R E. Molar group contributions to polymer flammability[J]. Journal of Applied Polymer Science, 2003, 87(3): 548-563. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Shengmei ZHANG, Ming LI, Ying ZHANG, Xi YI, Yiting YANG, Yali LIU. Effects of emulsifier and reacting temperature on characteristics of phase change microcapsules [J]. CIESC Journal, 2025, 76(S1): 444-452. |
| [3] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [4] | Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis [J]. CIESC Journal, 2025, 76(9): 4474-4486. |
| [5] | Xiaohe HUANG, Shouyu ZHANG. Effect of Ca species on sintering characteristics of Zhundong coal ash [J]. CIESC Journal, 2025, 76(9): 4913-4921. |
| [6] | Zequan LI, Tianyu CAI, Jiajun LIU, Qizhi CHEN, Peiwen XIAO, Xiaofei XU, Shuangliang ZHAO. Synthesis and application of lignin-based flocculants [J]. CIESC Journal, 2025, 76(9): 4709-4722. |
| [7] | Xiaochen ZHANG, Zhongshan LU, Teng GUO, Heng GUI, Hongbing SONG, Meng XIAO. Isolation and study of the degradation mechanism of hydroxyl-terminated polybutadiene-degrading strain [J]. CIESC Journal, 2025, 76(8): 4205-4216. |
| [8] | Mengyuan PENG, Jiaming LI, Min SHA, Ding ZHANG. Study on performance of quaternary ammonium fluorocarbon surfactant compound system [J]. CIESC Journal, 2025, 76(8): 4177-4184. |
| [9] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| [10] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [11] | Xinhuang YE, Jiahao XUE, Yulai ZHAO. Synthesis and characterization of polymerizable Gemini surfactants: stabilization of high internal phase emulsion [J]. CIESC Journal, 2025, 76(8): 4331-4340. |
| [12] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [13] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [14] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [15] | Junyi WANG, Zhangxun XIA, Fenning JING, Suli WANG. Study on the relaxation time distribution of electrochemical impedance spectroscopy in high temperature polymer electrolyte membrane fuel cells based on reformed hydrogen fuels [J]. CIESC Journal, 2025, 76(7): 3509-3520. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||