CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3509-3520.DOI: 10.11949/0438-1157.20241062

• Energy and environmental engineering • Previous Articles     Next Articles

Study on the relaxation time distribution of electrochemical impedance spectroscopy in high temperature polymer electrolyte membrane fuel cells based on reformed hydrogen fuels

Junyi WANG1,2,3(), Zhangxun XIA1,3, Fenning JING1,3, Suli WANG1,3()   

  1. 1.Division of Fuel Cell & Battery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    2.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    3.Key Laboratory of Alcohols Fuel Cell & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2024-09-23 Revised:2024-12-23 Online:2025-08-13 Published:2025-07-25
  • Contact: Suli WANG

基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究

王珺仪1,2,3(), 夏章讯1,3, 景粉宁1,3, 王素力1,3()   

  1. 1.中国科学院大连化学物理研究所燃料电池部,辽宁 大连 116023
    2.中国科学院大学化学工程学院,北京 100049
    3.中国科学院醇类燃料电池及复合电能源重点实验室,辽宁 大连 116023
  • 通讯作者: 王素力
  • 作者简介:王珺仪(1998—),女,硕士研究生,wangjunyi@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(22179130);国家自然科学基金项目(22379143);国家重点研发计划项目(2021YFB4001200)

Abstract:

The competitive adsorption of carbon monoxide (CO) and hydrogen (H2) on the surface of platinum (Pt) catalyst has been recognized to reduce the available active sites for the hydrogen oxidation reaction (HOR), which is considered as the primary cause of CO poisoning in proton exchange membrane fuel cells (PEMFCs). In high-temperature PEMFCs utilizing with phosphoric acid electrolyte, the distribution of phosphoric acid in the anode catalyst layer may significantly influence the mass transport and charge transfer processes of CO and H2 at the electrode interface, making the CO poisoning mechanism even more intricate. Therefore, comprehending the process and mechanism of CO poisoning in high-temperature PEMFCs holds crucial importance in optimizing the structure of the membrane-electrode assembly and enhancing the efficiency of the cell operation when supplied with reformate gas. In this paper, we propose a novel approach to regulate the number density of active sites in the anode catalyst layer and introduce the utilization of electrochemical impedance spectroscopy (EIS) to analyze the distribution of relaxation time (DRT). By employing this method, we aim to establish a quantitative description of the anode electrochemical reaction and mass transport processes. This enables us to better elucidate the mechanism of CO poisoning under conditions where the fuel supply consists of reformate gas. The obtained results demonstrate that the primary reason behind the performance degradation caused by the presence of CO in the anode of high-temperature PEMFCs is the mass transport polarization. The increase in Pt active site density can screen CO components in hydrogen-rich reformed gas and reduce the local CO component concentration, ultimately alleviating the H2 mass transfer limitation caused by active site occupancy.

Key words: high temperature polymer electrolyte membrane fuel cell, membrane electrode, carbon monoxide, distribution of relaxation time, electrochemical impedance spectroscopy, mass transport

摘要:

采用磷酸掺杂电解质膜的高温聚合物电解质膜燃料电池(HT-PEMFC),其阳极催化层中磷酸分布对电极界面处的CO、H2的电化学过程产生重要影响。通过研究不同阳极催化层活性位点密度的HT-PEMFC电池在重整气进料条件下的性能,并引入电化学阻抗谱弛豫时间分布(DRT)分析手段,建立阳极电化学反应与物质传输过程定量描述方法,阐释重整气进料条件下CO毒化作用机制。结果表明,低阳极活性位点密度单体电池相较高密度样品,在重整气进料条件下传质极化阻力提高了531%。Pt活性位点密度的提升可筛分富氢重整气中的CO组分、降低局域CO组分浓度,缓解活性位点占据导致的H2传质受限。

关键词: 高温聚合物电解质膜燃料电池, 膜电极, CO, 弛豫时间分布, 电化学阻抗谱, 物质传输

CLC Number: