CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5664-5676.DOI: 10.11949/0438-1157.20250468
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles
Yuanhe YUE1,2(
), Weiwei ZHAO1,2, Linjie HOU1,2, Yong ZHANG3(
), Zhonghao RAO1,2(
)
Received:2025-04-30
Revised:2025-06-09
Online:2025-12-19
Published:2025-11-25
Contact:
Yong ZHANG, Zhonghao RAO
岳远贺1,2(
), 赵微微1,2, 侯林杰1,2, 张勇3(
), 饶中浩1,2(
)
通讯作者:
张勇,饶中浩
作者简介:岳远贺(1991—),男,博士,副教授,yuanhe.yue@hebut.edu.cn
基金资助:CLC Number:
Yuanhe YUE, Weiwei ZHAO, Linjie HOU, Yong ZHANG, Zhonghao RAO. Study on the scaling-up of spouted fluidized beds based on the dual-nozzle spouting unit[J]. CIESC Journal, 2025, 76(11): 5664-5676.
岳远贺, 赵微微, 侯林杰, 张勇, 饶中浩. 基于双喷口喷动单元的喷动床放大研究[J]. 化工学报, 2025, 76(11): 5664-5676.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 固相 | |
| 颗粒直径 | 2.5 mm |
| 颗粒密度 | 2526 kg/m3 |
| 固相温度 | 363.15 K |
| 恢复系数(p-p) | 0.97 |
| 恢复系数(p-w) | 0.97 |
| 颗粒床层高度 | 0.12 m |
| 气相 | |
| 气体密度 | 1.2 kg/m3 |
| 气体动力黏度 | 1.8 Pa·s |
| 流体温度 | 293.15 K |
| 压力 | 101325 Pa |
Table 1 The main simulation parameters
| 参数 | 数值 |
|---|---|
| 固相 | |
| 颗粒直径 | 2.5 mm |
| 颗粒密度 | 2526 kg/m3 |
| 固相温度 | 363.15 K |
| 恢复系数(p-p) | 0.97 |
| 恢复系数(p-w) | 0.97 |
| 颗粒床层高度 | 0.12 m |
| 气相 | |
| 气体密度 | 1.2 kg/m3 |
| 气体动力黏度 | 1.8 Pa·s |
| 流体温度 | 293.15 K |
| 压力 | 101325 Pa |
| [1] | 肖力光, 李赫. 相变储能材料在建筑围护结构领域的应用及研究进展[J]. 化工新型材料, 2024, 52(4): 228-232. |
| Xiao L G, Li H. Application and research progress of phase change energy storage materials in building envelope structures[J]. New Chemical Materials, 2024, 52(4): 228-232. | |
| [2] | Akhtar A, Krepl V, Ivanova T. A combined overview of combustion, pyrolysis, and gasification of biomass[J]. Energy & Fuels, 2018, 32(7): 7294-7318. |
| [3] | da Silva C A M, Butzge J J, Nitz M, et al. Monitoring and control of coating and granulation processes in fluidized beds—a review[J]. Advanced Powder Technology, 2014, 25(1): 195-210. |
| [4] | Elordi G, Olazar M, Artetxe M, et al. Effect of the acidity of the HZSM-5 zeolite catalyst on the cracking of high density polyethylene in a conical spouted bed reactor[J]. Applied Catalysis A: General, 2012, 415: 89-95. |
| [5] | Yaman O, Kulah G, Koksal M. Surface-to-bed heat transfer for high-density particles in conical spouted and spout-fluid beds[J]. Particuology, 2019, 42: 35-47. |
| [6] | Al-Juwaya T, Ali N, Al-Dahhan M. Investigation of hydrodynamics of binary solids mixture spouted beds using radioactive particle tracking (RPT) technique[J]. Chemical Engineering Research and Design, 2019, 148: 21-44. |
| [7] | Larsen E, Moss S M, Skjelsbæk I. Gender Equality and Nation Branding in the Nordic Region[M]. London: Routledge, 2021. |
| [8] | Wang Z L, Lim C J, Grace J R. A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor[J]. Energy, 2019, 189: 116306. |
| [9] | 李水清, 姚强, 赵香龙. 喷动床反应器气固流动模型的研究进展[J]. 化学反应工程与工艺, 2003, 19(3): 264-279. |
| Li S Q, Yao Q, Zhao X L. Review of models on gas-solid flow patterns in spouted bed reactor[J]. Chemical Reaction Engineering and Technology, 2003, 19(3): 264-279. | |
| [10] | Olazar M, San Jose M J, Aguayo A T, et al. Stable operation conditions for gas-solid contact regimes in conical spouted beds[J]. Industrial & Engineering Chemistry Research, 1992, 31(7): 1784-1792. |
| [11] | Olazar M, San José M J, Aguayo A T, et al. Pressure drop in conical spouted beds[J]. The Chemical Engineering Journal, 1993, 51(1): 53-60. |
| [12] | Olazar M, San Jose M J, Aguayo A T, et al. Design factors of conical spouted beds and jet spouted beds[J]. Industrial & Engineering Chemistry Research, 1993, 32(6): 1245-1250. |
| [13] | de Brito R C, Tellabide M, Atxutegi A, et al. Draft tube design based on a borescopic technique in conical spouted beds[J]. Advanced Powder Technology, 2021, 32(11): 4420-4431. |
| [14] | Rüdisüli M, Schildhauer T J, Biollaz S M A, et al. Scale-up of bubbling fluidized bed reactors: a review[J]. Powder Technology, 2012, 217: 21-38. |
| [15] | Altzibar H, Estiati I, Lopez G, et al. Fountain confined conical spouted beds[J]. Powder Technology, 2017, 312: 334-346. |
| [16] | Mujumdar A S. Spouted bed technology—a brief review[R/OL]. Drying'84, 1984. . |
| [17] | Qiu K Z, Hu C S, Yang S L, et al. Computational evaluation of depth effect on the hydrodynamics of slot-rectangular spouted bed[J]. Powder Technology, 2016, 287: 51-60. |
| [18] | Xiao F, Kobayashi N, Suami A, et al. Optimizing the surface modification of cohesive polyethylene powders in a vibrated plasma-spouted bed: exploring agglomerate size impact on coarser particle addition mechanism[J]. Advanced Powder Technology, 2023, 34(12): 104274. |
| [19] | Grace J R, Lim C J. Scaleup, slot-rectangular, and multiple spouting[M]//Spouted and Spout-Fluid Beds. Cambridge: Cambridge University Press, 2010: 283-296. |
| [20] | Che X X, Wu F, Ren H B, et al. Numerical study on the effect of longitudinal vortex generator on semi-dry desulfurization process in 3D spouted beds[J]. Advanced Powder Technology, 2023, 34(3): 103961. |
| [21] | Wu F, Che X X, Huang Z Y, et al. Numerical study on the gas-solid flow in a spouted bed installed with a controllable nozzle and a swirling flow generator[J]. ACS Omega, 2020, 5(2): 1014-1024. |
| [22] | Elsinger G, Oprins H, Cherman V, et al. Effects of nozzle pitch adaptation in micro-scale liquid jet impingement[J]. Fluids, 2024, 9(3): 69. |
| [23] | Yang S L, Wang H, Wei Y G, et al. Particle-scale characteristics of the three distinct regions in the multi-chamber slot-rectangular spouted bed[J]. Powder Technology, 2020, 360: 658-672. |
| [24] | van Buijtenen M S, van Dijk W J, Deen N G, et al. Numerical and experimental study on multiple-spout fluidized beds[J]. Chemical Engineering Science, 2011, 66(11): 2368-2376. |
| [25] | Yue Y H, Zhao W W, Sun X L, et al. A CFD-DEM study of a two-joint spouting flow pattern in a multiple rectangular spout fluidized bed[J]. Powder Technology, 2024, 435: 119351. |
| [26] | Yue Y H, Wang T Y, Sakai M, et al. Particle-scale study of spout deflection in a flat-bottomed spout fluidized bed[J]. Chemical Engineering Science, 2019, 205: 121-133. |
| [27] | Yue Y H, Wang S, Shen Y S. Gas-solid mixing and heat transfer performance in alternating spout deflection[J]. Chemical Engineering Science, 2021, 234: 116446. |
| [28] | Wang S, Luo K, Yang S L, et al. Parallel LES-DEM simulation of dense flows in fluidized beds[J]. Applied Thermal Engineering, 2017, 111: 1523-1535. |
| [29] | Tang T Q, He Y R, Tai T, et al. DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds[J]. Chemical Engineering Science, 2017, 172: 79-99. |
| [30] | Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: theoretical developments[J]. Chemical Engineering Science, 2007, 62(13): 3378-3396. |
| [31] | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. Cambridge, MA: Academic Press, 1994. |
| [32] | Li J, Mason D J. A computational investigation of transient heat transfer in pneumatic transport of granular particles[J]. Powder Technology, 2000, 112(3): 273-282. |
| [33] | Wang S, Luo K, Hu C S, et al. CFD-DEM simulation of heat transfer in fluidized beds: model verification, validation, and application[J]. Chemical Engineering Science, 2019, 197: 280-295. |
| [34] | Wang S, Luo K, Hu C S, et al. CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed[J]. Chemical Engineering Science, 2017, 172: 199-215. |
| [35] | Link J M, Cuypers L A, Deen N G, et al. Flow regimes in a spout-fluid bed: a combined experimental and simulation study[J]. Chemical Engineering Science, 2005, 60(13): 3425-3442. |
| [36] | Link J M, Deen N G, Kuipers J A M, et al. PEPT and discrete particle simulation study of spout-fluid bed regimes[J]. AIChE Journal, 2008, 54(5): 1189-1202. |
| [37] | Patil A V, Peters E A J F, Sutkar V S, et al. A study of heat transfer in fluidized beds using an integrated DIA/PIV/IR technique[J]. Chemical Engineering Journal, 2015, 259: 90-106. |
| [1] | Zhuolong LIU, Yunhua GAN, Keyang QU, Ningguang CHEN, Minghui PAN. Research on the effect of uniform electric field on characteristics of biodiesel small-scale jet diffusion combustion [J]. CIESC Journal, 2025, 76(9): 4800-4808. |
| [2] | Xinquan CHANG, Kexue ZHANG, Jun WANG, Guodong XIA. Thermophoretic forces on irregular particles in the free molecular regime [J]. CIESC Journal, 2025, 76(8): 3944-3953. |
| [3] | Jianhai LIU, Lei WANG, Zhaojin LU, Zhishan BAI, Pingyu ZHANG. Research on performance of electrolyzer coupled with electrochemical and multiphase flow model [J]. CIESC Journal, 2025, 76(8): 3885-3893. |
| [4] | Hang ZHOU, Sijing ZHANG, Jian LIU, Xiaosong ZHANG. Numerical analysis of flow boiling heat transfer of zeotropic mixtures in mini-channels [J]. CIESC Journal, 2025, 76(8): 3864-3872. |
| [5] | Xi CHEN, Shuyan WANG, Baoli SHAO, Nuo DING, Lei XIE. Numerical simulation study of liquid-solid fluidized beds based on second-order moment model of particle dynamic restitution coefficient [J]. CIESC Journal, 2025, 76(7): 3246-3258. |
| [6] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| [7] | Lingban WANG, Yifei SUN, Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN. Study on the methane hydrates exploitation by depressurization in a large-scale fan column-shaped reactor [J]. CIESC Journal, 2025, 76(6): 2958-2973. |
| [8] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [9] | Xinyuan ZHANG, Chengxiang HE, Yating LI, Chunying ZHU, Youguang MA, Taotao FU. Advances in simulation and experimental research methods for mass transfer of liquid-liquid heterogeneous system in microchannels [J]. CIESC Journal, 2025, 76(2): 484-503. |
| [10] | Bohui SHI, Guangshuo LIU, Enqi GUO, Xiaohang SHI, Haotian LIU, Haihao WU, Xiaoping LI, Shangfei SONG, Jing GONG. Numerical study on flow aggregation and deposition processes of hydrates in water-based systems using CFD-DEM [J]. CIESC Journal, 2025, 76(11): 5554-5573. |
| [11] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
| [12] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
| [13] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
| [14] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
| [15] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||