CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2958-2973.DOI: 10.11949/0438-1157.20241267
• Energy and environmental engineering • Previous Articles Next Articles
Lingban WANG(
), Yifei SUN(
), Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN
Received:2024-11-11
Revised:2024-12-18
Online:2025-07-09
Published:2025-06-25
Contact:
Yifei SUN
王令颁(
), 孙漪霏(
), 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进
通讯作者:
孙漪霏
作者简介:王令颁(1995—),男,博士研究生,wlb9519@qq.com
基金资助:CLC Number:
Lingban WANG, Yifei SUN, Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN. Study on the methane hydrates exploitation by depressurization in a large-scale fan column-shaped reactor[J]. CIESC Journal, 2025, 76(6): 2958-2973.
王令颁, 孙漪霏, 卜禹豪, 许振彬, 孙贤, 邵瀚锋, 孙长宇, 陈光进. 大尺度扇柱形反应釜内甲烷水合物降压开采规律研究[J]. 化工学报, 2025, 76(6): 2958-2973.
Add to citation manager EndNote|Ris|BibTeX
| 组别 | 体系类别 | 进水口 | 平均补水 速率/(L/h) | 气动调节阀开度/% |
|---|---|---|---|---|
| 1 | 封闭 | — | — | 15 |
| 2 | 封闭 | — | — | 30 |
| 3 | 封闭 | — | — | 45 |
| 4 | 封闭 | — | — | 60 |
| 5 | 封闭 | — | — | 75 |
| 6 | 开放 | 阀门17 | 7 | 15 |
| 7 | 开放 | 阀门17 | 7 | 30 |
| 8 | 开放 | 阀门17 | 7 | 45 |
| 9 | 开放 | 阀门17 | 7 | 60 |
| 10 | 开放 | 阀门17 | 7 | 75 |
Table 1 Summary of information for the cold model experiments
| 组别 | 体系类别 | 进水口 | 平均补水 速率/(L/h) | 气动调节阀开度/% |
|---|---|---|---|---|
| 1 | 封闭 | — | — | 15 |
| 2 | 封闭 | — | — | 30 |
| 3 | 封闭 | — | — | 45 |
| 4 | 封闭 | — | — | 60 |
| 5 | 封闭 | — | — | 75 |
| 6 | 开放 | 阀门17 | 7 | 15 |
| 7 | 开放 | 阀门17 | 7 | 30 |
| 8 | 开放 | 阀门17 | 7 | 45 |
| 9 | 开放 | 阀门17 | 7 | 60 |
| 10 | 开放 | 阀门17 | 7 | 75 |
| 次序 | 类别 | 注入量/mol | 注入压力和温度/(MPa,℃) | 稳定压力和温度/(MPa,℃) |
|---|---|---|---|---|
| 1 | 注气 | 85.49 | (10.03,8.44) | (5.38,5.29) |
| 2 | 注气 | 79.76 | (10.13,8.49) | (5.82,5.34) |
| 3 | 注气 | 73.44 | (10.01,7.70) | (6.38,5.36) |
| 4 | 注水 | 253.39 | (7.87,6.21) | (6.62,5.34) |
| 5 | 注水 | 286.86 | (9.79,6.49) | (6.95,5.19) |
| 6 | 注水 | 123.67 | (9.60,5.64) | (8.13,5.22) |
Table 2 Summary of information for the hydrate formation process
| 次序 | 类别 | 注入量/mol | 注入压力和温度/(MPa,℃) | 稳定压力和温度/(MPa,℃) |
|---|---|---|---|---|
| 1 | 注气 | 85.49 | (10.03,8.44) | (5.38,5.29) |
| 2 | 注气 | 79.76 | (10.13,8.49) | (5.82,5.34) |
| 3 | 注气 | 73.44 | (10.01,7.70) | (6.38,5.36) |
| 4 | 注水 | 253.39 | (7.87,6.21) | (6.62,5.34) |
| 5 | 注水 | 286.86 | (9.79,6.49) | (6.95,5.19) |
| 6 | 注水 | 123.67 | (9.60,5.64) | (8.13,5.22) |
| 参数 | 数值 |
|---|---|
| 组别 | 11 |
| 体系类别 | 开放 |
| 进水口 | 阀门17 |
| 初始压力/MPa | 9.80 |
| 初始温度/℃ | 8.50 |
| 开采压力/MPa | 3.00 |
| 开采时间/min | 2700 |
| 累计产气量/mol | 232.04 |
| 累计注水量/L | 98.62 |
| 累计产水量/L | 94.15 |
Table 3 Summary of information for the hydrate production experiment
| 参数 | 数值 |
|---|---|
| 组别 | 11 |
| 体系类别 | 开放 |
| 进水口 | 阀门17 |
| 初始压力/MPa | 9.80 |
| 初始温度/℃ | 8.50 |
| 开采压力/MPa | 3.00 |
| 开采时间/min | 2700 |
| 累计产气量/mol | 232.04 |
| 累计注水量/L | 98.62 |
| 累计产水量/L | 94.15 |
| [1] | EIA. International energy outlook 2019[R]. U.S. Energy Information Administration, 2019. |
| [2] | Koh C A, Sloan E D, Sum A K, et al. Fundamentals and applications of gas hydrates[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 237-257. |
| [3] | Hassanpouryouzband A, Joonaki E, Farahani M V, et al. Gas hydrates in sustainable chemistry[J]. Chemical Society Reviews, 2020, 49(15): 5225-5309. |
| [4] | Rose K, Boswell R, Collett T. Mount elbert gas hydrate stratigraphic test well, Alaska north slope: coring operations, core sedimentology, and lithostratigraphy[J]. Marine and Petroleum Geology, 2011, 28(2): 311-331. |
| [5] | Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
| [6] | Li X S, Yang B, Li G, et al. Experimental study on gas production from methane hydrate in porous media by huff and puff method in pilot-scale hydrate simulator[J]. Fuel, 2012, 94: 486-494. |
| [7] | Wang Y, Li X S, Xu W Y, et al. Experimental investigation into factors influencing methane hydrate formation and a novel method for hydrate formation in porous media[J]. Energy & Fuels, 2013, 27(7): 3751-3757. |
| [8] | Wang Y F, Wang L B, Li Y, et al. Effect of temperature on gas production from hydrate-bearing sediments by using a large 196-L reactor[J]. Fuel, 2020, 275: 117963. |
| [9] | Li N, Sun Z F, Sun C Y, et al. Simulating natural hydrate formation and accumulation in sediments from dissolved methane using a large three-dimensional simulator[J]. Fuel, 2018, 216: 612-620. |
| [10] | Su K H, Sun C Y, Dandekar A, et al. Experimental investigation of hydrate accumulation distribution in gas seeping system using a large scale three-dimensional simulation device[J]. Chemical Engineering Science, 2012, 82: 246-259. |
| [11] | Heeschen K U, Abendroth S, Priegnitz M, et al. Gas production from methane hydrate: a laboratory simulation of the multistage depressurization test in mallik, northwest territories, Canada[J]. Energy & Fuels, 2016, 30(8): 6210-6219. |
| [12] | Schicks J M, Spangenberg E, Giese R, et al. New approaches for the production of hydrocarbons from hydrate bearing sediments[J]. Energies, 2011, 4(1): 151-172. |
| [13] | Huang L, Kang J L, Bu Q T, et al. Experimental investigation of hydrate production via deep depressurization using a large-scale laboratory reactor[J]. Energy & Fuels, 2023, 37(4): 2799-2810. |
| [14] | Liu C L, Li Y L, Liu L L, et al. An integrated experimental system for gas hydrate drilling and production and a preliminary experiment of the depressurization method[J]. Natural Gas Industry B, 2020, 7(1): 56-63. |
| [15] | Konno Y, Jin Y, Shinjou K, et al. Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment[J]. RSC Advances, 2014, 4(93): 51666-51675. |
| [16] | Nagao J. Development of methane hydrate production method[J]. Synthesiology, 2012, 5(2): 89-97. |
| [17] | Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1115-1127. |
| [18] | Yin Z Y, Wan Q C, Gao Q, et al. Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments[J]. Applied Energy, 2020, 271: 115195. |
| [19] | 薛芸, 石京平, 贺承祖. 低速非达西流动机理分析[J]. 石油勘探与开发, 2001, 28(5): 102-104. |
| Xue Y, Shi J P, He C Z. Analysis of low velocity non-Darcy flow mechanism[J]. Petroleum Exploration and Development, 2001, 28(5): 102-104. | |
| [20] | 胡勇, 郭长敏, 徐轩, 等. 岩层气藏岩石孔喉结构及渗流特征[J]. 石油实验地质, 2015, 37(3): 390-393. |
| Hu Y, Guo C M, Xu X, et al. Pore throat structure and flow characteristics of sandstone reservoirs[J]. Petroleum Geology & Experiment, 2015, 37(3): 390-393. | |
| [21] | 徐轩, 胡勇, 田姗姗, 等. 低渗致密气藏气相启动压力梯度表征及测量[J]. 特种油气藏, 2015, 22(4): 78-81. |
| Xu X, Hu Y, Tian S S, et al. Characterization and measurement of starting pressure gradient of gas phase in low-permeability tight gas reservoir[J]. Special Oil & Gas Reservoirs, 2015, 22(4): 78-81. | |
| [22] | Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215. |
| [23] | Moridis G J, Sloan E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007, 48(6): 1834-1849. |
| [24] | Rutqvist J, Moridis G J, Grover T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012, 92: 65-81. |
| [25] | Wang Y, Feng J C, Li X S, et al. Methane hydrate decomposition and sediment deformation in unconfined sediment with different types of concentrated hydrate accumulations by innovative experimental system[J]. Applied Energy, 2018, 226: 916-923. |
| [26] | Yu Y S, Zhang X W, Liu J W, et al. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
| [27] | Khataniar S, Kamath V A, Omenihu S D, et al. Modelling and economic analysis of gas production from hydrates by depressurization method[J]. The Canadian Journal of Chemical Engineering, 2002, 80(1): 135-143. |
| [28] | Li Q P, Zhou S W, Zhao J F, et al. Research status and prospects of natural gas hydrate exploitation technology[J]. Chinese Journal of Engineering Science, 2022, 24(3): 214. |
| [29] | Chen B B, Yang M J, Sun H R, et al. Visualization study on the promotion of natural gas hydrate production by water flow erosion[J]. Fuel, 2019, 235: 63-71. |
| [30] | Sean W Y, Sato T, Yamasaki A, et al. CFD and experimental study on methane hydrate dissociation ( p a r t Ⅰ ) : Dissociation under water flow[J]. AIChE Journal, 2007, 53(1): 262-274. |
| [31] | Li S X, Wu D D, Wang X P, et al. Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens[J]. Energy, 2021, 232: 120889. |
| [32] | Zhao E M, Hou J, Liu Y G, et al. Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea[J]. Energy, 2020, 213: 118826. |
| [33] | Ahn T, Lee J, Lee J Y, et al. Experimental analysis on depressurization-induced gas production from 10-meter-scale hydrate-bearing sediments[J]. International Journal of Offshore and Polar Engineering, 2021, 31(3): 372-377. |
| [34] | 阮徐可, 李小森, 杨明军, 等. 天然气水合物二次生成及渗透率变化对降压开采的影响[J]. 石油学报, 2015, 36(5): 612-619. |
| Ruan X K, Li X S, Yang M J, et al. Influences of gas hydrate reformation and permeability changes on depressurization recovery[J]. Acta Petrolei Sinica, 2015, 36(5): 612-619. | |
| [35] | Li B, Sun Y H, Jiang S H, et al. Investigating the influence of Joule-Thomson cooling on hydrate reformation near the wellbore[J]. Gas Science and Engineering, 2024, 124: 205288. |
| [36] | Li X S, Zhang Y, Li G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator[J]. Energy & Fuels, 2011, 25(10): 4497-4505. |
| [37] | Wang Z Q, Liu S Y, Li H Y, et al. A numerical simulation study of methane hydrate reformation during the dissociation process induced by depressurization[J]. Fuel, 2022, 313: 122983. |
| [38] | Konno Y, Fujii T, Sato A, et al. Key findings of the world's first offshore methane hydrate production test off the coast of Japan: toward future commercial production[J]. Energy & Fuels, 2017, 31(3): 2607-2616. |
| [39] | Yamamoto K, Wang X X, Tamaki M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances, 2019, 9(45): 25987-26013. |
| [40] | Dong B C, Xiao P, Sun Y F, et al. Coupled flow and geomechanical analysis for gas production from marine heterogeneous hydrate-bearing sediments[J]. Energy, 2022, 255: 124501. |
| [41] | Zhang N T, Li S X, Chen L T, et al. Study of gas-liquid two-phase flow characteristics in hydrate-bearing sediments[J]. Energy, 2024, 290: 130215. |
| [42] | Ji Y K, Kneafsey T J, Hou J, et al. Relative permeability of gas and water flow in hydrate-bearing porous media: a micro-scale study by lattice Boltzmann simulation[J]. Fuel, 2022, 321: 124013. |
| [43] | Gao Q, Yin Z Y, Zhao J Z, et al. Tuning the fluid production behaviour of hydrate-bearing sediments by multi-stage depressurization[J]. Chemical Engineering Journal, 2021, 406: 127174. |
| [44] | Wang Y, Feng J C, Li X S, et al. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods[J]. Energy, 2015, 90: 1931-1948. |
| [45] | Yang M J, Zhao J, Zheng J N, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: a review[J]. Applied Energy, 2019, 256: 113878. |
| [46] | Kuang Y M, Yang L, Li Q P, et al. Physical characteristic analysis of unconsolidated sediments containing gas hydrate recovered from the Shenhu Area of the South China sea[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106173. |
| [47] | Wang C N, Li X X, Li Q P, et al. Thermal conductivity of hydrate and effective thermal conductivity of hydrate-bearing sediment[J]. Chinese Journal of Chemical Engineering, 2024, 73: 176-188. |
| [48] | Zhang J D, Yin Z Y, Li Q P, et al. Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery[J]. Energy, 2023, 282: 128315. |
| [49] | Yin Z Y, Moridis G, Tan H K, et al. Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium[J]. Applied Energy, 2018, 220: 681-704. |
| [50] | Feng Y C, Chen L, Suzuki A, et al. Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization[J]. Energy, 2019, 166: 1106-1119. |
| [51] | Qin X W, Liang Q Y, Ye J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. |
| [52] | Huang L, Su Z, Wu N Y. Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment[J]. Energy, 2015, 91: 782-798. |
| [53] | Zhang Q, Liu X, He T, et al. Influence of gas hydrate on the acoustic properties of sediment: a comprehensive review with a focus on experimental measurements[J]. Acta Geologica Sinica-English Edition, 2022, 96(2): 713-726. |
| [54] | Zhu Y J, Chu Y S, Huang X, et al. Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection[J]. Energy, 2023, 269: 126825. |
| [55] | Ren L L, Qi Y H, Chen J L, et al. Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution[J]. Applied Energy, 2020, 275: 115211. |
| [56] | Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): 1-38. |
| [57] | Li Y H, Liu W G, Zhu Y M, et al. Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods[J]. Applied Energy, 2016, 162: 1627-1632. |
| [58] | Sun H Z, Chang Y J, Sun B J, et al. Spatial-temporal evolution of reservoir effective stress during marine hydrate depressurization production[J]. International Journal of Hydrogen Energy, 2023, 48(86): 33483-33495. |
| [59] | Dvorkin J, Helgerud M B, Waite W F, et al. Introduction to physical properties and elasticity models[M]//Coastal Systems and Continental Margins. Dordrecht: Springer Netherlands, 2003: 245-260. |
| [1] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| [2] | Chenghui YAN, Yingming XIE, Zhihai PANG, Shengqiao WENG. Study on strengthening of cold storage of R134a hydrate by foamed porous materials [J]. CIESC Journal, 2025, 76(6): 3084-3092. |
| [3] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [4] | Xinyuan ZHANG, Chengxiang HE, Yating LI, Chunying ZHU, Youguang MA, Taotao FU. Advances in simulation and experimental research methods for mass transfer of liquid-liquid heterogeneous system in microchannels [J]. CIESC Journal, 2025, 76(2): 484-503. |
| [5] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
| [6] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
| [7] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
| [8] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
| [9] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
| [10] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
| [11] | Mingjun YANG, Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN, Yongchen SONG. Research on the enhanced method of CO2-seawater hydrate generation [J]. CIESC Journal, 2024, 75(8): 2939-2948. |
| [12] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
| [13] | Xu MA, Yadong TENG, Jie LIU, Yulu WANG, Peng ZHANG, Lianhai ZHANG, Wanlong YAO, Jing ZHAN, Qingbai WU. CO2 capture and separation from flue gas by spraying hydrate method [J]. CIESC Journal, 2024, 75(5): 2001-2016. |
| [14] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
| [15] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||