CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5645-5654.DOI: 10.11949/0438-1157.20250399
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles
Qingjie CUI1,2(
), Li SHEN1,2, Yicheng NI1,2, Yao ZHOU3, Xiaoping YANG1,2(
), Yonghai ZHANG1,2, Jinjia WEI1,2
Received:2025-04-15
Revised:2025-05-14
Online:2025-12-19
Published:2025-11-25
Contact:
Xiaoping YANG
崔庆杰1,2(
), 沈立1,2, 倪一程1,2, 周尧3, 杨小平1,2(
), 张永海1,2, 魏进家1,2
通讯作者:
杨小平
作者简介:崔庆杰(2000—),男,博士研究生,cuiqingjie@stu.xjtu.edu.cn
基金资助:CLC Number:
Qingjie CUI, Li SHEN, Yicheng NI, Yao ZHOU, Xiaoping YANG, Yonghai ZHANG, Jinjia WEI. Heat transfer characteristics of a novel loop heat pipe using eco-friendly refrigerant HP-1 as the working fluid[J]. CIESC Journal, 2025, 76(11): 5645-5654.
崔庆杰, 沈立, 倪一程, 周尧, 杨小平, 张永海, 魏进家. 环保型制冷剂HP-1为工质的新型环路热管传热特性研究[J]. 化工学报, 2025, 76(11): 5645-5654.
Add to citation manager EndNote|Ris|BibTeX
| 组件 | 部件 | 材料 | 尺寸 |
|---|---|---|---|
| 蒸发器 | 底板 | 黄铜 | 外部尺寸:90 mm×80 mm×4 mm 加热面积:30 mm×20 mm |
| 蒸汽槽道 | 黄铜 | 微柱尺寸:35 mm×1 mm×1 mm | |
| 补偿腔 | 黄铜 | 内部尺寸:40 mm×30 mm×8 mm | |
| 毛细芯 | 黄铜 | 粉末粒径:30 μm 孔隙率:50% | |
| 引射器 | 蒸汽喷嘴 | 不锈钢 | 1.0 mm(喉部直径) 1.4 mm(出口直径) |
| 液相喷嘴 | 不锈钢 | 0.35 mm(进液间隙) | |
| 混合腔 | 不锈钢 | 1.62 mm(喉部直径) | |
| 扩散器 | 不锈钢 | 4.0 mm(出口直径) | |
| 冷凝器 | 冷凝器Ⅰ(冷板) | 紫铜 | 工质内管:6 mm×4 mm×500 mm |
| 不锈钢 | |||
| 冷凝器Ⅱ(套管) | 紫铜 | 工质内管:6 mm×4 mm×350 mm 冷却液外管:14 mm×12 mm×350 mm | |
| 不锈钢 | |||
| 连接管线 | 蒸汽线 | 不锈钢 | 6 mm(4 mm)×140 mm[(外/内)径×长] |
| 液相线Ⅰ | 不锈钢 | 6 mm(4 mm)×470 mm[(外/内)径×长] | |
| 液相线Ⅱ | 不锈钢 | 6 mm(4 mm)×140 mm[(外/内)径×长] | |
| 液相线Ⅲ | 不锈钢 | 6 mm(4 mm)×910 mm[(外/内)径×长] |
Table 1 Basic parameters and material information of LHPIs
| 组件 | 部件 | 材料 | 尺寸 |
|---|---|---|---|
| 蒸发器 | 底板 | 黄铜 | 外部尺寸:90 mm×80 mm×4 mm 加热面积:30 mm×20 mm |
| 蒸汽槽道 | 黄铜 | 微柱尺寸:35 mm×1 mm×1 mm | |
| 补偿腔 | 黄铜 | 内部尺寸:40 mm×30 mm×8 mm | |
| 毛细芯 | 黄铜 | 粉末粒径:30 μm 孔隙率:50% | |
| 引射器 | 蒸汽喷嘴 | 不锈钢 | 1.0 mm(喉部直径) 1.4 mm(出口直径) |
| 液相喷嘴 | 不锈钢 | 0.35 mm(进液间隙) | |
| 混合腔 | 不锈钢 | 1.62 mm(喉部直径) | |
| 扩散器 | 不锈钢 | 4.0 mm(出口直径) | |
| 冷凝器 | 冷凝器Ⅰ(冷板) | 紫铜 | 工质内管:6 mm×4 mm×500 mm |
| 不锈钢 | |||
| 冷凝器Ⅱ(套管) | 紫铜 | 工质内管:6 mm×4 mm×350 mm 冷却液外管:14 mm×12 mm×350 mm | |
| 不锈钢 | |||
| 连接管线 | 蒸汽线 | 不锈钢 | 6 mm(4 mm)×140 mm[(外/内)径×长] |
| 液相线Ⅰ | 不锈钢 | 6 mm(4 mm)×470 mm[(外/内)径×长] | |
| 液相线Ⅱ | 不锈钢 | 6 mm(4 mm)×140 mm[(外/内)径×长] | |
| 液相线Ⅲ | 不锈钢 | 6 mm(4 mm)×910 mm[(外/内)径×长] |
| 变量 | 符号 | 不确定度 |
|---|---|---|
| 温度 | ΔT | 0.5℃ |
| 电压 | ΔU/U | 0.5% |
| 电流 | ΔI/I | 0.5% |
| 加热面积 | ΔA/A | 0.3% |
| 热负荷 | ΔQin/Qin | 4.9% |
| 热通量 | Δq/q | 4.91% |
| 总热阻 | ΔRLHPI/RLHPI | 5.0% |
Table 2 Uncertainty of each physical quantity of the flat-plate loop heat pipe with coupled ejector
| 变量 | 符号 | 不确定度 |
|---|---|---|
| 温度 | ΔT | 0.5℃ |
| 电压 | ΔU/U | 0.5% |
| 电流 | ΔI/I | 0.5% |
| 加热面积 | ΔA/A | 0.3% |
| 热负荷 | ΔQin/Qin | 4.9% |
| 热通量 | Δq/q | 4.91% |
| 总热阻 | ΔRLHPI/RLHPI | 5.0% |
| 热管 | 文献 | 工质 | qmax/(W/cm2) | Tmax/℃ | Tsink/℃ |
|---|---|---|---|---|---|
| LHPI | 本工作 | HP-1 | 50.0 | 101 | 10 |
| [ | 去离子水 | 48.6 | 149 | 1 | |
| [ | 去离子水 | 51.3 | 132 | 10 | |
| LHP | [ | 去离子水 | 4.5 | 190 | 25 |
| [ | 乙醇 | 5.8 | 106 | 25 | |
| [ | 去离子水 | 14.6 | 197 | — | |
| [ | 去离子水 | 32 | 96 | 24 |
Table 3 Comparison of LHPI and conventional LHP performance
| 热管 | 文献 | 工质 | qmax/(W/cm2) | Tmax/℃ | Tsink/℃ |
|---|---|---|---|---|---|
| LHPI | 本工作 | HP-1 | 50.0 | 101 | 10 |
| [ | 去离子水 | 48.6 | 149 | 1 | |
| [ | 去离子水 | 51.3 | 132 | 10 | |
| LHP | [ | 去离子水 | 4.5 | 190 | 25 |
| [ | 乙醇 | 5.8 | 106 | 25 | |
| [ | 去离子水 | 14.6 | 197 | — | |
| [ | 去离子水 | 32 | 96 | 24 |
| [1] | Qian C, Gheitaghy A M, Fan J, et al. Thermal management on IGBT power electronic devices and Modules[J]. IEEE Access, 2018, 6: 12868-12884. |
| [2] | Huang P C, Yang C, Hwang J J, et al. Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers[J]. International Journal of Heat and Mass Transfer, 2005, 48(3/4): 647-664. |
| [3] | Gupta N K, Tiwari A K, Ghosh S K. Heat transfer mechanisms in heat pipes using nanofluids—a review[J]. Experimental Thermal and Fluid Science, 2018, 90: 84-100. |
| [4] | Ahamed M S, Saito Y, Mashiko K, et al. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices[J]. Heat and Mass Transfer, 2017, 53(11): 3241-3247. |
| [5] | Li J, Lv L C. Experimental studies on a novel thin flat heat pipe heat spreader[J]. Applied Thermal Engineering, 2016, 93: 139-146. |
| [6] | Nematollahisarvestani A, Lewis R J, Lee Y C. Design of thermal ground planes for cooling of foldable smartphones[J]. Journal of Electronic Packaging, 2019, 141(2): 021004. |
| [7] | Lee D, Byon C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat and Mass Transfer, 2018, 122: 306-314. |
| [8] | Zhou W J, Li Y, Chen Z S, et al. Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe[J]. Applied Thermal Engineering, 2019, 162: 114215. |
| [9] | Gully P, Mo Q, Yan T, et al. Thermal behavior of a cryogenic loop heat pipe for space application[J]. Cryogenics, 2011, 51(8): 420-428. |
| [10] | Hong S H, Wang S F, Zhang L Z. Effect of groove configuration on two-phase flow instability for ultra-thin looped heat pipes in thermal management system[J]. International Journal of Thermal Sciences, 2017, 121: 369-380. |
| [11] | Okamoto A, Miyakita T, Nagano H. On-orbit experiment plan of loop heat pipe and the test results of ground test[J]. Microgravity Science and Technology, 2019, 31(3): 327-337. |
| [12] | Ambirajan A, Adoni A A, Vaidya J S, et al. Loop heat pipes: a review of fundamentals, operation, and design[J]. Heat Transfer Engineering, 2012, 33(4/5): 387-405. |
| [13] | Yang X P, Cui Q J, You Z Y, et al. Experimental and theoretical study on performance of bi-porous wick for passive phase-change devices[J]. Physics of Fluids, 2024, 36(12): 123308. |
| [14] | Pastukhov V G, Maydanik Y F. Low-noise cooling system for PC on the base of loop heat pipes[J]. Applied Thermal Engineering, 2007, 27(5/6): 894-901. |
| [15] | Mo D C, Ding N, Lu S S. Gravity effects on the performance of a flat loop heat pipe[J]. Microgravity Science and Technology, 2009, 21(1): 95-102. |
| [16] | Kumar P, Sahu G, Chatterjee D, et al. Copper wick based loop heat pipe for thermal management of a high-power LED module[J]. Applied Thermal Engineering, 2022, 211: 118459. |
| [17] | Lu X Y, Hua T C, Liu M J, et al. Thermal analysis of loop heat pipe used for high-power LED[J]. Thermochimica Acta, 2009, 493(1/2): 25-29. |
| [18] | Zhao X D, Wang Z Y, Tang Q. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China[J]. Applied Thermal Engineering, 2010, 30(16): 2526-2536. |
| [19] | Xu Z, Lu J R, Xing S G. Thermal performance of greenhouse heating with loop heat pipe solar collector and ground source heat pump[J]. Results in Engineering, 2022, 15: 100626. |
| [20] | Giarno, Dedy H, Heru K G. B., et al. Heat absorbing capability characterization of loop heat pipe model's with variation of filling ratio[C]//The 4th International Conference on Nuclear Energy Technologies and Sciences (ICoNETS) 2021. AIP Conference Proceedings, 2022, 2501(1): 030014. |
| [21] | He S, Zhou P, Liu W, et al. Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics[J]. Applied Thermal Engineering, 2020, 168: 114897. |
| [22] | Zhou W, Ling W S, Duan L, et al. Development and tests of loop heat pipe with multi-layer metal foams as wick structure[J]. Applied Thermal Engineering, 2016, 94: 324-330. |
| [23] | Xu J Y, Zhang L, Xu H, et al. Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks[J]. International Journal of Heat and Mass Transfer, 2014, 72: 378-387. |
| [24] | 王野, 纪献兵, 郑晓欢, 等. 多尺度复合毛细芯环路热管的传热特性[J]. 化工学报, 2015, 66(6): 2055-2061. |
| Wang Y, Ji X B, Zheng X H, et al. Heat transfer characteristics of loop heat pipe with modulated composite porous wick[J]. CIESC Journal, 2015, 66(6): 2055-2061. | |
| [25] | Wu S C, Peng J, Lai S R, et al. Investigation of the effect of heat leak in loop heat pipes with flat evaporator[C]//2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei, Taiwan, 2009: 348-351. |
| [26] | Li X Q, Zhu K, Li H L, et al. Performance comparison regarding loop heat pipes with different evaporator structures[J]. International Journal of Thermal Sciences, 2019, 136: 86-95. |
| [27] | Yang X P, Liu J, Wang G X, et al. Experimental study of mechanical-capillary driven phase-change loop for heat dissipation of electronic devices and batteries[J]. Applied Thermal Engineering, 2022, 210: 118350. |
| [28] | Jiang C, Liu W, Liu Z C, et al. Startup characteristics of pump-assisted capillary phase change loop[J]. Applied Thermal Engineering, 2017, 126: 1115-1125. |
| [29] | Liu L, Yang X P, Yuan B, et al. Experimental study of a novel loop heat pipe with a vapor-driven jet injector[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120518. |
| [30] | Liu L, Yang X P, Yuan B, et al. Investigation of temperature oscillations in a novel loop heat pipe with a vapor-driven jet injector[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121672. |
| [31] | Zhou Y, Liu J P, Ni Y C, et al. Performance of a novel loop heat pipe coupled with micro vapor-driven jet injector—an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125853. |
| [32] | 王约翰, 南晓红, 欧阳洪生, 等. 绿色工质HP-1高温热泵系统中膨胀阀开度与流量匹配特性[J]. 上海交通大学学报, 2023, 57(10): 1367-1377. |
| Wang Y H, Nan X H, Ouyang H S, et al. Matching characteristics of expansion valve opening and flow rate of high temperature heat pump with green refrigerant HP-1[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1367-1377. | |
| [33] | Kwidzinski R. Experimental and theoretical investigations of two-phase flow in low pressure steam-water injector[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118618. |
| [34] | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| [35] | Celata G P, Cumo M, Furrer M. Experimental tests of a stainless steel loop heat pipe with flat evaporator[J]. Experimental Thermal and Fluid Science, 2010, 34(7): 866-878. |
| [36] | Ling W S, Zhou W, Yu W, et al. Thermal performance of loop heat pipes with smooth and rough porous copper fiber sintered sheets[J]. Energy Conversion and Management, 2017, 153: 323-334. |
| [37] | Wu S C, Yen S H, Lo W C, et al. Study of nickel wick structure applied to loop heat pipe with flat evaporator[J]. Key Engineering Materials, 2016, 723: 282-287. |
| [38] | Chernysheva M A, Yushakova S I, Maydanik Y F. Effect of external factors on the operating characteristics of a copper-water loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2015, 81: 297-304. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||