CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5911-5922.DOI: 10.11949/0438-1157.20250568
• Fluid dynamics and transport phenomena • Previous Articles
Shaogeng ZHONG1,2(
), Hong ZHANG1,2, Ronggang ZHANG1,2, Yan REN3, Weidong WU3(
)
Received:2025-05-24
Revised:2025-06-29
Online:2025-12-19
Published:2025-11-25
Contact:
Weidong WU
钟绍庚1,2(
), 张宏1,2, 张荣刚1,2, 任燕3, 武卫东3(
)
通讯作者:
武卫东
作者简介:钟绍庚(1994—),男,博士,讲师,1207321787@qq.com
基金资助:CLC Number:
Shaogeng ZHONG, Hong ZHANG, Ronggang ZHANG, Yan REN, Weidong WU. Numerical study on heat transfer characteristics of a novel rectangular printed circuit heat exchanger[J]. CIESC Journal, 2025, 76(11): 5911-5922.
钟绍庚, 张宏, 张荣刚, 任燕, 武卫东. 新型矩形印刷电路板式换热器的数值研究[J]. 化工学报, 2025, 76(11): 5911-5922.
Add to citation manager EndNote|Ris|BibTeX
| 工况 | 热侧温度/℃ | 热侧压力/MPa | 热侧质量流量/(kg·s-1) | 冷侧温度/℃ | 冷侧压力/MPa | 冷侧质量流量/(kg·s-1) |
|---|---|---|---|---|---|---|
| 组1 | 80~190 | 8.5 | 0.002 | 50 | 20 | 0.002 |
| 组2 | 120 | 8~9 | 0.002 | 50 | 20 | 0.002 |
| 组3 | 120 | 8.5 | 0.002 | 50~80 | 20 | 0.002 |
| 组4 | 120 | 8.5 | 0.002 | 50 | 19~21 | 0.002 |
| 组5 | 120 | 8.5 | 0.001~0.006 | 50 | 20 | 0.001~0.006 |
Table 1 Simulated operating conditions of RM-PCHE
| 工况 | 热侧温度/℃ | 热侧压力/MPa | 热侧质量流量/(kg·s-1) | 冷侧温度/℃ | 冷侧压力/MPa | 冷侧质量流量/(kg·s-1) |
|---|---|---|---|---|---|---|
| 组1 | 80~190 | 8.5 | 0.002 | 50 | 20 | 0.002 |
| 组2 | 120 | 8~9 | 0.002 | 50 | 20 | 0.002 |
| 组3 | 120 | 8.5 | 0.002 | 50~80 | 20 | 0.002 |
| 组4 | 120 | 8.5 | 0.002 | 50 | 19~21 | 0.002 |
| 组5 | 120 | 8.5 | 0.001~0.006 | 50 | 20 | 0.001~0.006 |
| 湍流模型 | 热侧出口温度/℃ | 相对误差/% | 冷侧出口温度/℃ | 相对误差/% |
|---|---|---|---|---|
| 实验值 | 50.4 | — | 63.3 | — |
| 标准k-ω | 54.4 | 7.9 | 58.5 | 7.6 |
| SST k-ω | 53.0 | 5.2 | 61.7 | 2.5 |
| 标准k-ε | 54.8 | 8.7 | 59.3 | 6.3 |
| RNG k-ε | 53.9 | 6.9 | 61.1 | 3.5 |
Table 2 Comparison of turbulence model calculation results
| 湍流模型 | 热侧出口温度/℃ | 相对误差/% | 冷侧出口温度/℃ | 相对误差/% |
|---|---|---|---|---|
| 实验值 | 50.4 | — | 63.3 | — |
| 标准k-ω | 54.4 | 7.9 | 58.5 | 7.6 |
| SST k-ω | 53.0 | 5.2 | 61.7 | 2.5 |
| 标准k-ε | 54.8 | 8.7 | 59.3 | 6.3 |
| RNG k-ε | 53.9 | 6.9 | 61.1 | 3.5 |
| 方案 | 网格数 | y+值 | 高压侧传热系数/(W·m-2·℃-1) | 相对偏差/% |
|---|---|---|---|---|
| 1 | 3207852 | 0.532 | 4782.0 | 5.73 |
| 2 | 4176820 | 0.539 | 4704.6 | 4.02 |
| 3 | 5196750 | 0.545 | 4621.4 | 2.18 |
| 4 | 5911124 | 0.561 | 4541.7 | 0.42 |
| 5 | 6693236 | 0.569 | 4522.8 | 0.00 |
Table 3 Grid schemes and results
| 方案 | 网格数 | y+值 | 高压侧传热系数/(W·m-2·℃-1) | 相对偏差/% |
|---|---|---|---|---|
| 1 | 3207852 | 0.532 | 4782.0 | 5.73 |
| 2 | 4176820 | 0.539 | 4704.6 | 4.02 |
| 3 | 5196750 | 0.545 | 4621.4 | 2.18 |
| 4 | 5911124 | 0.561 | 4541.7 | 0.42 |
| 5 | 6693236 | 0.569 | 4522.8 | 0.00 |
| 工况点 | (Th,i /Tc,i)/℃ | (Ph,o/Pc,o)/MPa | (mh/mc)/(kg·s-1) |
|---|---|---|---|
| 1 | 66.4 / 44.2 | 8.2 / 18.5 | 0.001466 / 0.001467 |
| 2 | 70.4 / 44.8 | 8.2 / 18.5 | 0.001434 / 0.001480 |
| 3 | 73.8 /45.7 | 8.2 / 18.4 | 0.001466 / 0.001467 |
| 4 | 79.0 / 46.4 | 8.2 / 18.4 | 0.001425 / 0.001459 |
| 5 | 84.0 / 46.5 | 8.2 / 18.7 | 0.001410 / 0.001462 |
| 6 | 92.2 / 47.2 | 8.1 / 18.7 | 0.001358 / 0.001472 |
Table 4 The verification conditions for RM-PCHE model
| 工况点 | (Th,i /Tc,i)/℃ | (Ph,o/Pc,o)/MPa | (mh/mc)/(kg·s-1) |
|---|---|---|---|
| 1 | 66.4 / 44.2 | 8.2 / 18.5 | 0.001466 / 0.001467 |
| 2 | 70.4 / 44.8 | 8.2 / 18.5 | 0.001434 / 0.001480 |
| 3 | 73.8 /45.7 | 8.2 / 18.4 | 0.001466 / 0.001467 |
| 4 | 79.0 / 46.4 | 8.2 / 18.4 | 0.001425 / 0.001459 |
| 5 | 84.0 / 46.5 | 8.2 / 18.7 | 0.001410 / 0.001462 |
| 6 | 92.2 / 47.2 | 8.1 / 18.7 | 0.001358 / 0.001472 |
| 公式 | 文献 |
|---|---|
| [ | |
| [ | |
| [ | |
| [ |
Table 5 Heat transfer correlations from different literature
| 公式 | 文献 |
|---|---|
| [ | |
| [ | |
| [ | |
| [ |
| [1] | 任冠宇, 张义飞, 李新泽, 等. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
| Ren G Y, Zhang Y F, Li X Z, et al. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers[J]. CIESC Journal, 2024, 75(S1): 108-117. | |
| [2] | 张义飞, 刘舫辰, 张双星, 等. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
| Zhang Y F, Liu F C, Zhang S X, et al. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide[J]. CIESC Journal, 2023, 74(S1): 183-190. | |
| [3] | 朱兵国, 巩楷刚, 彭斌. 垂直管内高质量流速超临界CO2换热特性[J]. 化工进展, 2024, 43(2): 937-947. |
| Zhu B G, Gong K G, Peng B. Heat transfer characteristics of supercritical CO2 with high mass flux in vertical tube[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 937-947. | |
| [4] | 孙铭泽, 马宁, 李浩然, 等. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388. |
| Sun M Z, Ma N, Li H R, et al. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium[J]. CIESC Journal, 2022, 73(3): 1379-1388. | |
| [5] | 杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(S1): 13-26. |
| Yang G, Shao W W. Review of optimization and heat transfer correlations of printed circuit heat exchanger[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 13-26. | |
| [6] | Li Q, Flamant G, Yuan X G, et al. Compact heat exchangers: a review and future applications for a new generation of high temperature solar receivers[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4855-4875. |
| [7] | Chai L, Tassou S A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles[J]. Thermal Science and Engineering Progress, 2020, 18: 100543. |
| [8] | Ma Y, Xie G N, Hooman K. Review of printed circuit heat exchangers and its applications in solar thermal energy[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111933. |
| [9] | Huang C Y, Cai W H, Wang Y, et al. Review on the characteristics of flow and heat transfer in printed circuit heat exchangers[J]. Applied Thermal Engineering, 2019, 153: 190-205. |
| [10] | Liu G X, Huang Y P, Wang J F, et al. A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110290. |
| [11] | Kim W, Baik Y J, Jeon S, et al. A mathematical correlation for predicting the thermal performance of cross, parallel, and counterflow PCHEs[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1294-1302. |
| [12] | Chai L, Tassou S A. Numerical study of the thermohydraulic performance of printed circuit heat exchangers for supercritical CO2 Brayton cycle applications[J]. Energy Procedia, 2019, 161: 480-488. |
| [13] | Cui X Y, Xiang M R, Guo J F, et al. Analysis of coupled heat transfer of supercritical CO2 from the viewpoint of distribution coordination[J]. The Journal of Supercritical Fluids, 2019, 152: 104560. |
| [14] | Xu H, Duan C J, Ding H, et al. The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle[J]. Nuclear Engineering and Technology, 2021, 53(6): 1786-1795. |
| [15] | Jeon S, Baik Y J, Byon C, et al. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle[J]. International Journal of Heat and Mass Transfer, 2016, 102: 867-876. |
| [16] | Liu B H, Lu M J, Shui B, et al. Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery[J]. Applied Energy, 2022, 305: 117923. |
| [17] | Wang J, Yan X P, Boersma B J, et al. Numerical investigation on the thermal-hydraulic performance of the modified channel supercritical CO2 printed circuit heat exchanger[J]. Applied Thermal Engineering, 2023, 221: 119678. |
| [18] | Zhang H Y, Guo J F, Huai X L, et al. Studies on the thermal-hydraulic performance of zigzag channel with supercritical pressure CO2 [J]. The Journal of Supercritical Fluids, 2019, 148: 104-115. |
| [19] | Liu S H, Gao C, Liu M Y, et al. An improved zigzag-type printed circuit heat exchanger for supercritical CO2 Brayton cycles[J]. Annals of Nuclear Energy, 2023, 183: 109653. |
| [20] | Lee S M, Kim K Y. Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application[J]. Journal of Nuclear Science and Technology, 2012, 49(3): 343-351. |
| [21] | Lv Y G, Wen Z X, Li Q, et al. Numerical investigation on thermal hydraulic performance of hybrid wavy channels in a supercritical CO2 precooler[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121891. |
| [22] | Wen Z X, Lv Y G, Li Q, et al. Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118922. |
| [23] | Cui X Y, Guo J F, Huai X L, et al. Numerical investigations on serpentine channel for supercritical CO2 recuperator[J]. Energy, 2019, 172: 517-530. |
| [24] | Cui X Y, Guo J F, Huai X L, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2 [J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366. |
| [25] | Kim T H, Kwon J G, Yoon S H, et al. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle[J]. Nuclear Engineering and Design, 2015, 288: 110-118. |
| [26] | Chu W X, Li X H, Ma T, et al. Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins[J]. Applied Thermal Engineering, 2017, 114: 1309-1318. |
| [27] | Han Z X, Guo J F, Liao H Y, et al. Numerical investigation on the thermal-hydraulic performance of supercritical CO2 in a modified airfoil fins heat exchanger[J]. The Journal of Supercritical Fluids, 2022, 187: 105643. |
| [28] | Lee S M, Kim K Y. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations[J]. Heat and Mass Transfer, 2013, 49(7): 1021-1028. |
| [29] | Zhong S G, Ren Y, Wang P D, et al. Experimental test of rectangular microchannel printed circuit heat exchanger using supercritical carbon dioxide as working fluid[J]. The Journal of Supercritical Fluids, 2023, 200: 105967. |
| [30] | Han Z X, Guo J F, Huai X L. Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy[J]. Energy, 2023, 270: 126928. |
| [31] | Hall W B, Jackson J D, Watson A. Paper 3: a review of forced convection heat transfer to fluids at supercritical pressures[J]. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 1967, 182(9): 10-22. |
| [32] | Huai X L, Koyama S, Zhao T S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions[J]. Chemical Engineering Science, 2005, 60(12): 3337-3345. |
| [33] | Jackson J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. |
| [34] | Li H Z, Kruizenga A, Anderson M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||