CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5900-5910.DOI: 10.11949/0438-1157.20250581
• Fluid dynamics and transport phenomena • Previous Articles
Qichao LIU(
), Shibo ZHANG(
), Yuqing LI, Yunlong ZHOU, Yiwen RAN
Received:2025-05-28
Revised:2025-08-02
Online:2025-12-19
Published:2025-11-25
Contact:
Shibo ZHANG
通讯作者:
张世博
作者简介:刘起超(1991—),男,博士,讲师,lqcliuqichao@126.com
基金资助:CLC Number:
Qichao LIU, Shibo ZHANG, Yuqing LI, Yunlong ZHOU, Yiwen RAN. Prediction of void fraction in gas-liquid two-phase flow under fluctuating vibration in horizontal and vertical pipes based on WOA-CNN-GRU-ATT[J]. CIESC Journal, 2025, 76(11): 5900-5910.
刘起超, 张世博, 李昱庆, 周云龙, 冉议文. 基于WOA-CNN-GRU-ATT的起伏振动水平和垂直管气液两相流截面含气率预测[J]. 化工学报, 2025, 76(11): 5900-5910.
Add to citation manager EndNote|Ris|BibTeX
| 测量参数 | 相对不确定度 |
|---|---|
| 水流量 | 1%~6.667% |
| 空气流量 | 0.556%~5% |
| 截面含气率 | 0.47%~7.155% |
Table1 Relative uncertainty of experimental measurement parameters
| 测量参数 | 相对不确定度 |
|---|---|
| 水流量 | 1%~6.667% |
| 空气流量 | 0.556%~5% |
| 截面含气率 | 0.47%~7.155% |
| 模型 | RMSE | MAPE/% | R2 |
|---|---|---|---|
| BPNN | 0.0976 | 17.67 | 0.7465 |
| SVM | 0.0737 | 13.47 | 0.8552 |
| CNN-GRT-ATT | 0.0389 | 7.17 | 0.9676 |
| WOA-C-G-A | 0.0368 | 6.61 | 0.9709 |
Table2 Comparison of model errors
| 模型 | RMSE | MAPE/% | R2 |
|---|---|---|---|
| BPNN | 0.0976 | 17.67 | 0.7465 |
| SVM | 0.0737 | 13.47 | 0.8552 |
| CNN-GRT-ATT | 0.0389 | 7.17 | 0.9676 |
| WOA-C-G-A | 0.0368 | 6.61 | 0.9709 |
| 振频/Hz | 振幅/m | 气相折算速度/(m/s) | 液相折算速度/(m/s) | 截面含气率实验值/% | 截面含气率预测值/% | 相对误差/% |
|---|---|---|---|---|---|---|
| 4 | 0.025 | 0.5 | 1 | 16.05 | 26.82 | 67.08 |
| 4 | 0.075 | 1 | 0.1 | 48.27 | 52.25 | 8.23 |
| 0 | 0 | 1 | 0.1 | 56.03 | 52.16 | -6.90 |
| 4 | 0.025 | 1 | 0.5 | 46.60 | 42.39 | -9.04 |
Table 3 Train set error of void fraction in inclined tube
| 振频/Hz | 振幅/m | 气相折算速度/(m/s) | 液相折算速度/(m/s) | 截面含气率实验值/% | 截面含气率预测值/% | 相对误差/% |
|---|---|---|---|---|---|---|
| 4 | 0.025 | 0.5 | 1 | 16.05 | 26.82 | 67.08 |
| 4 | 0.075 | 1 | 0.1 | 48.27 | 52.25 | 8.23 |
| 0 | 0 | 1 | 0.1 | 56.03 | 52.16 | -6.90 |
| 4 | 0.025 | 1 | 0.5 | 46.60 | 42.39 | -9.04 |
| 管径/mm | 振频/Hz | 振幅/m | 气相折算速度/(m/s) | 液相折算速度/(m/s) | 截面含气率实验值/% | 截面含气率预测值/% | 相对误差/% |
|---|---|---|---|---|---|---|---|
| 101.6 | 0 | 0 | 5.57059 | 0.7 | 71.80 | 70.92 | -1.23 |
| 152 | 0 | 0 | 4.08715 | 0.5 | 76.51 | 72.68 | -5.01 |
| 12.7 | 0 | 0 | 0.92647 | 6.32 | 11.68 | 14.24 | 21.95 |
| 12.7 | 0 | 0 | 0.67281 | 6.32 | 9.17 | 8.97 | -2.20 |
| 12.7 | 0 | 0 | 1.50396 | 6.32 | 18.11 | 17.24 | -4.81 |
| 101.6 | 0 | 0 | 0.30113 | 0.7 | 20.28 | 22.58 | 11.36 |
| 25.4 | 0 | 0 | 0.8976 | 2 | 24.02 | 24.38 | 1.49 |
| 52.3 | 0 | 0 | 2.57203 | 1 | 42.45 | 55.68 | 31.15 |
| 101.6 | 0 | 0 | 10.42862 | 0.7 | 82.21 | 73.06 | -11.12 |
| 101.6 | 0 | 0 | 8.09252 | 0.7 | 78.12 | 72.64 | -7.02 |
| 52.3 | 0 | 0 | 0.57219 | 1 | 8.03 | 9.09 | 13.23 |
Table 4 Train relative error of void fraction in vertical upward tube
| 管径/mm | 振频/Hz | 振幅/m | 气相折算速度/(m/s) | 液相折算速度/(m/s) | 截面含气率实验值/% | 截面含气率预测值/% | 相对误差/% |
|---|---|---|---|---|---|---|---|
| 101.6 | 0 | 0 | 5.57059 | 0.7 | 71.80 | 70.92 | -1.23 |
| 152 | 0 | 0 | 4.08715 | 0.5 | 76.51 | 72.68 | -5.01 |
| 12.7 | 0 | 0 | 0.92647 | 6.32 | 11.68 | 14.24 | 21.95 |
| 12.7 | 0 | 0 | 0.67281 | 6.32 | 9.17 | 8.97 | -2.20 |
| 12.7 | 0 | 0 | 1.50396 | 6.32 | 18.11 | 17.24 | -4.81 |
| 101.6 | 0 | 0 | 0.30113 | 0.7 | 20.28 | 22.58 | 11.36 |
| 25.4 | 0 | 0 | 0.8976 | 2 | 24.02 | 24.38 | 1.49 |
| 52.3 | 0 | 0 | 2.57203 | 1 | 42.45 | 55.68 | 31.15 |
| 101.6 | 0 | 0 | 10.42862 | 0.7 | 82.21 | 73.06 | -11.12 |
| 101.6 | 0 | 0 | 8.09252 | 0.7 | 78.12 | 72.64 | -7.02 |
| 52.3 | 0 | 0 | 0.57219 | 1 | 8.03 | 9.09 | 13.23 |
| [6] | Zhou Y L, Zhao P, Yang N. Experimental study on flow pattern transition of gas liquid two-phase flow in horizontal tubes under vibration condition[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(6): 17-22. |
| [7] | 周云龙, 李珊珊. 起伏振动状态下倾斜管气液两相流型实验研究[J]. 原子能科学技术, 2018, 52(2): 262-268. |
| Zhou Y L, Li S S. Experiment investigation on gas-liquid two-phase flow pattern in inclined pipe under fluctuant vibration condition[J]. Atomic Energy Science and Technology, 2018, 52(2): 262-268. | |
| [8] | 周云龙, 汪俊超, 刘起超. 起伏非线性振动下倾斜上升管内气液两相流流型转变分析[J]. 原子能科学技术, 2020, 54(10): 1787-1794. |
| Zhou Y L, Wang J C, Liu Q C. Analysis of gas-liquid two-phase flow pattern transition in inclined rising pipe under fluctuant nonlinear vibration condition[J]. Atomic Energy Science and Technology, 2020, 54(10): 1787-1794. | |
| [9] | 刘起超, 张世博, 周云龙, 等. 起伏振动水平管气液两相流型及转变机理[J]. 化工学报, 2024, 75(2): 493-504. |
| Liu Q C, Zhang S B, Zhou Y L, et al. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration[J]. CIESC Journal, 2024, 75(2): 493-504. | |
| [10] | Chen S W, Lee W C, Chang Y H, et al. Experimental investigation on stable/unstable flow behaviors of parallel boiling channels under forced vertical vibrations[J]. Applied Thermal Engineering, 2022, 202: 117840. |
| [11] | Zhou Y L, Chang H, Lv Y Z. Gas-liquid two-phase flow in a horizontal channel under nonlinear oscillation: flow regime, frictional pressure drop and void fraction[J]. Experimental Thermal and Fluid Science, 2019, 109: 109852. |
| [12] | Wang L, Zhang Y, Bao Y Y, et al. Numerical study of transient flow characteristics of gas-liquid two-phase flow in inclined upward tube under periodic vibration[J]. Ocean Engineering, 2023, 282: 115024. |
| [13] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
| Liu Q C, Zhou Y L, Chen C. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration[J]. CIESC Journal, 2023, 74(6): 2391-2403. | |
| [14] | Zhou Y L, Ran Y W, Liu Q C, et al. Investigation on void fraction of gas-liquid two-phase flow in horizontal pipe under fluctuating vibration[J]. Nuclear Engineering and Design, 2025, 431: 113710. |
| [15] | Osman E S A. Artificial neural network models for identifying flow regimes and predicting liquid holdup in horizontal multiphase flow[J]. SPE Production & Facilities, 2004, 19(1): 33-40. |
| [16] | Shippen M E, Scott S L. A neural network model for prediction of liquid holdup in two-phase horizontal flow[J]. SPE Production & Facilities, 2004, 19(2): 67-76. |
| [17] | Xiao R G, Li K, Sun L Y, et al. The prediction of liquid holdup in horizontal pipe with BP neural network[J]. Energy Science & Engineering, 2020, 8(6): 2159-2168. |
| [18] | Li C F, Liu M M, Zhao N, et al. Void fraction measurement using modal decomposition and ensemble learning in vertical annular flow[J]. Chemical Engineering Science, 2022, 247: 116929. |
| [19] | Han B B, Ge B, Wang F, et al. Void fraction detection technology of gas-liquid two-phase bubbly flow based on convolutional neural network[J]. Experimental Thermal and Fluid Science, 2023, 142: 110804. |
| [20] | Kan Z, Liu X Y. The study on void fraction prediction of gas-liquid two phase flow based on convolutional neural network[J]. Journal of Physics: Conference Series, 2021, 2121(1): 012029. |
| [21] | Gao Z K, Hou L H, Dang W D, et al. Multitask-based temporal-channel wise CNN for parameter prediction of two-phase flows[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6329-6336. |
| [22] | Gao Z K, Li M Y, Hou L H, et al. Stage-wise densely connected network for parameter measurement of two-phase flows[J]. IEEE Sensors Journal, 2021, 21(16): 18123-18131. |
| [23] | Chu W J, Liu Y, Pan L Q, et al. Study on measure approach of void fraction in narrow channel based on fully convolutional neural network[J]. Frontiers in Energy Research, 2021, 9: 636813. |
| [24] | Zhai H F, Zhou Q, Hu G H. Predicting micro-bubble dynamics with semi-physics-informed deep learning[J]. AIP Advances, 2022, 12(3): 035153. |
| [25] | Shi Y Y, Sun Y X, Wang M, et al. Flow pattern recognition for horizontal gas-liquid two-phase flow with a hybrid deep-learning model[J]. Flow Measurement and Instrumentation, 2025, 102: 102829. |
| [1] | Buongiorno J, Jurewicz J, Golay M, et al. The offshore floating nuclear plant concept[J]. Nuclear Technology, 2016, 194(1): 1-14. |
| [2] | Orr R S, Dotson C. Offshore nuclear power plants[J]. Nuclear Engineering and Design, 1973, 25(3): 334-349. |
| [3] | Ghadimi P, Bankhshandehrostami A. Determination of the heave and pitch motions of a floating cylinder by analytical solution of its diffraction problem and examination of the effects of geometric parameters on its dynamics in regular waves[J]. International Journal of Applied Mathematical Research, 2012, 1(4):611-633. |
| [4] | Li S L, Jiang Y Q, Cai W H, et al. Numerical study on condensation heat transfer and pressure drop characteristics of methane upward flow in a spiral pipe under sloshing condition[J]. International Journal of Heat and Mass Transfer, 2019, 129: 310-325. |
| [5] | Ren Y, Cai W H, Jiang Y Q. Numerical study on shell-side flow and heat transfer of spiral-wound heat exchanger under sloshing working conditions[J]. Applied Thermal Engineering, 2018, 134: 287-297. |
| [6] | 周云龙, 赵盘, 杨宁. 振动状态下水平管内气液两相流流型转变的实验研究[J]. 热能动力工程, 2017, 32(6): 17-22. |
| [26] | Qiao W L, Guo H, Huang E Z, et al. Two-phase flow pattern identification by embedding double attention mechanisms into a convolutional neural network[J]. Journal of Marine Science and Engineering, 2023, 11(4): 793. |
| [27] | Baroczy C J. A systematic correlation for two-phase pressure drop[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 234-249. |
| [28] | Cengel Y A, Cimbala J M. Fluid Mechanics: Fundamentals and Applications[M]. McGraw-Hill Higher Education, 2013: 231-259. |
| [29] | Massel S R. Ocean Surface Waves: Their Physics and Prediction[M]. Singapore: World Scientific, 1996. |
| [30] | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| [31] | Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
| [32] | Wang L J, Liu J Y, Yan Y, et al. Gas-liquid two-phase flow measurement using Coriolis flowmeters incorporating artificial neural network, support vector machine, and genetic programming algorithms[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(5): 852-868. |
| [33] | Liu H, Ma Z Y, Zhang L T, et al. Minimum entropy production principle-based semi-empirical model for void fraction prediction in vertical upward dispersed gas-liquid flows[J]. International Journal of Heat and Mass Transfer, 2025, 247: 127120. |
| [1] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [2] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [3] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [4] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [5] | Chunmeng ZHU, Zeng LI, Nan LIU, Yunpeng ZHAO, Xiaogang SHI, Xingying LAN. Fault detection of catalyst loss in FCC disengager based on autoencoder and multi-scale symbolic transfer entropy [J]. CIESC Journal, 2025, 76(9): 4512-4523. |
| [6] | Xiaojiang LIANG, Weiwei CHEN, Jianan LUO, Haotian FEI, Xuelei YE, Wenhao LI, Yong NIE. Dispersion characteristics of charged bubbles in an electric dispersion tubular packed bed [J]. CIESC Journal, 2025, 76(8): 3915-3931. |
| [7] | Yulun WU, Zhenlei WANG, Xin WANG. Contrastive learning based on method for identifying operating conditions of ethylene cracking furnace [J]. CIESC Journal, 2025, 76(6): 2733-2742. |
| [8] | Wenliang LI, Cheng JI, Chen LIANG, Sichen WU, Shilin CHEN, Wei SUN, Chi ZHAI. On-line soft measurement of penicillin concentration based on TDMN [J]. CIESC Journal, 2025, 76(6): 2848-2858. |
| [9] | Chenghui YAN, Yingming XIE, Zhihai PANG, Shengqiao WENG. Study on strengthening of cold storage of R134a hydrate by foamed porous materials [J]. CIESC Journal, 2025, 76(6): 3084-3092. |
| [10] | Yichen ZHANG, Wenbiao ZHANG, Haoyang LI, Xiaoyang NING. Flow measurement of gas-liquid two-phase CO2 using Venturi tube based on dual differential pressure model [J]. CIESC Journal, 2025, 76(4): 1493-1503. |
| [11] | Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network [J]. CIESC Journal, 2025, 76(4): 1671-1679. |
| [12] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
| [13] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
| [14] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
| [15] | Xinyu ZHENG, Zehua REN, Li ZHOU, Shiyang CHAI, Xu JI. Lattice energy regression model based on crystal graph convolutional neural networks [J]. CIESC Journal, 2025, 76(3): 1084-1092. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||