CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6696-6707.DOI: 10.11949/0438-1157.20250619
• Energy and environmental engineering • Previous Articles Next Articles
Lei ZHANG(
), Jiawei KANG, Haoran LI(
), Wenpeng HONG
Received:2025-06-09
Revised:2025-08-13
Online:2026-01-23
Published:2025-12-31
Contact:
Haoran LI
通讯作者:
李浩然
作者简介:张雷(1996—),女,博士,讲师,arctanty@neepu.edu.cn
基金资助:CLC Number:
Lei ZHANG, Jiawei KANG, Haoran LI, Wenpeng HONG. Affected mechanisms of oxygen-deficient pretreatment on reduction of NO by biochar[J]. CIESC Journal, 2025, 76(12): 6696-6707.
张雷, 康嘉伟, 李浩然, 洪文鹏. 贫氧预处理对生物炭还原NO的影响机制研究[J]. 化工学报, 2025, 76(12): 6696-6707.
Add to citation manager EndNote|Ris|BibTeX
| 元素分析/%(质量分数,daf) | 工业分析/%(质量分数,ar) | |||||||
|---|---|---|---|---|---|---|---|---|
| C | H | N | S | O① | 水分 | 挥发分 | 固定碳 | 灰分 |
| 66.70 | 3.34 | 1.16 | 0.38 | 28.42 | 7.35 | 60.41 | 19.10 | 13.14 |
Table 1 Ultimate and proximate analyses of rice husk
| 元素分析/%(质量分数,daf) | 工业分析/%(质量分数,ar) | |||||||
|---|---|---|---|---|---|---|---|---|
| C | H | N | S | O① | 水分 | 挥发分 | 固定碳 | 灰分 |
| 66.70 | 3.34 | 1.16 | 0.38 | 28.42 | 7.35 | 60.41 | 19.10 | 13.14 |
| 反应 | LUMO-HOMO能量差值/eV |
|---|---|
| BCraw-NO | |
| 反应Ⅰ | Gap Ⅰ = BCraw (LUMO) - NO (HOMO) = 0.83 |
| 反应Ⅱ | Gap Ⅱ = NO (LUMO) - BCraw (HOMO) = 3.51 |
| BCoxy-NO | |
| 反应Ⅲ | Gap Ⅲ= BCoxy (LUMO) - NO (HOMO) = 0.87 |
| 反应Ⅳ | Gap Ⅳ= NO (LUMO) - BCoxy (HOMO) = 3.28 |
Table 2 The LUMO-HOMO gaps during the reduction of NO by BCraw and BCoxy
| 反应 | LUMO-HOMO能量差值/eV |
|---|---|
| BCraw-NO | |
| 反应Ⅰ | Gap Ⅰ = BCraw (LUMO) - NO (HOMO) = 0.83 |
| 反应Ⅱ | Gap Ⅱ = NO (LUMO) - BCraw (HOMO) = 3.51 |
| BCoxy-NO | |
| 反应Ⅲ | Gap Ⅲ= BCoxy (LUMO) - NO (HOMO) = 0.87 |
| 反应Ⅳ | Gap Ⅳ= NO (LUMO) - BCoxy (HOMO) = 3.28 |
| 模型 | CLEI/(e·eV) | ||||
|---|---|---|---|---|---|
| C1 | N2 | C3 | C4 | C5 | |
| BCraw | 0.05620 | 0.06942 | 0.01546 | 0.06249 | 0.03673 |
| BCoxy | 0.06183 | 0.06233 | 0.01628 | 0.05067 | 0.02498 |
Table 3 The CLEI values of primary atoms in BCraw and BCoxy structures
| 模型 | CLEI/(e·eV) | ||||
|---|---|---|---|---|---|
| C1 | N2 | C3 | C4 | C5 | |
| BCraw | 0.05620 | 0.06942 | 0.01546 | 0.06249 | 0.03673 |
| BCoxy | 0.06183 | 0.06233 | 0.01628 | 0.05067 | 0.02498 |
| 模型 | (dcNO/dt)max/(μmol/(mol·℃)) | t0/s | tmax/s | Ti/℃ | Tmax/℃ |
|---|---|---|---|---|---|
| BCraw | -3.70 | 4206 | 4419 | 701 | 736.5 |
| BCoxy | -3.33 | 4512 | 4626 | 752 | 771 |
Table 4 The reduction characteristic parameters during the reaction between biochar and NO
| 模型 | (dcNO/dt)max/(μmol/(mol·℃)) | t0/s | tmax/s | Ti/℃ | Tmax/℃ |
|---|---|---|---|---|---|
| BCraw | -3.70 | 4206 | 4419 | 701 | 736.5 |
| BCoxy | -3.33 | 4512 | 4626 | 752 | 771 |
| [4] | Council State. The 13th Five-Year Plan for the protection of the ecological environment[EB/OL]. (2016-11-24) [2025-06-07]. . |
| [5] | 生态环境部, 国家发展和改革委员会, 工业和信息化部, 住房和城乡建设部, 交通运输部, 农业农村部, 国家能源局. 减污降碳协同增效实施方案[EB/OL].(2022-06-10)[2025-06-07]. . |
| Ministry of Ecology and Environment of the People's Republic of China, National Development and Reform Commission, Ministry of Industry and Information Technology of the People's Republic of China, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Ministry of Transport of the People's Republic of China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Energy Administration. Implementation plan for synergistic efficiency of pollution reduction and carbon reduction[EB/OL]. (2022-06-10) [2025-06-07]. . | |
| [6] | 国务院. 空气质量持续改善行动计划[EB/OL].(2023-11-30)[2025-06-07]. |
| Council State. The action plan for continuous improvement of air quality[EB/OL]. (2023-11-30) [2025-06-07]. . | |
| [7] | 赵杰. 生物质气再燃还原NO x 的实验研究[D]. 上海: 上海应用技术大学, 2016: 5-11. |
| Zhao J. Experimental study on NO x emissions reduction by biogas reburning[D]. Shanghai: Shanghai Institute of Technology, 2016: 5-11. | |
| [8] | 王鹏涛, 王乃继, 梁兴, 等. 气体燃料再燃脱硝机理及工程应用进展[J]. 洁净煤技术, 2019, 25(6): 51-60. |
| Wang P T, Wang N J, Liang X, et al. Denitration mechanism and engineering application progress of gas fuel reburning[J]. Clean Coal Technology, 2019, 25(6): 51-60. | |
| [9] | Verdía Barbará P, Choudhary H, Nakasu P S, et al. Recent advances in the use of ionic liquids and deep eutectic solvents for lignocellulosic biorefineries and biobased chemical and material production[J]. Chemical Reviews, 2025, 125(12): 5461-5583. |
| [10] | Ai Z J, Cao C K, Zhang W J, et al. Machine learning-aided engineering of biochar from biomass pyrolysis and activation processes for enhanced CO2 adsorption[J]. Separation and Purification Technology, 2025, 376: 133882. |
| [11] | Buss W, Hilber I, Graham M C, et al. Composition of PAHs in biochar and implications for biochar production[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(20): 6755-6765. |
| [12] | Wen C, Liu T Y, Wang D P, et al. Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms[J]. Progress in Energy and Combustion Science, 2023, 99: 101098. |
| [13] | Marcińczyk M, Oleszczuk P. Biochar and engineered biochar as slow- and controlled-release fertilizers[J]. Journal of Cleaner Production, 2022, 339: 130685. |
| [14] | Shu Y, Wang H C, Zhu J W, et al. An experimental study of heterogeneous NO reduction by biomass reburning[J]. Fuel Processing Technology, 2015, 132: 111-117. |
| [15] | Karlström O, Perander M, DeMartini N, et al. Role of ash on the NO formation during char oxidation of biomass[J]. Fuel, 2017, 190: 274-280. |
| [16] | Cao S S, Duan F, Wang P, et al. Biochar contribution in biomass reburning technology and transformation mechanism of its nitrogen foundational groups at different oxygen contents[J]. Energy, 2018, 155: 272-280. |
| [17] | 赵宗彬, 李文, 李保庆. 氧气对半焦还原NO反应的作用机理研究[J]. 中国矿业大学学报, 2001, 30(5): 484-487. |
| Zhao Z B, Li W, Li B Q. Influence mechanism of O2 on NO-char reaction[J]. Journal of China University of Mining & Technology, 2001, 30(5): 484-487. | |
| [18] | Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389. |
| [19] | Moulijn J A, Kapteijn F. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165. |
| [20] | Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials(2): Effect of oxygen on the reaction of NO with ashless carbon black[J]. Carbon, 2000, 38(5): 729-740. |
| [21] | Wang Z Z, Sun R, Ismail T M, et al. Characterization of coal char surface behavior after a heterogeneous oxidative treatment[J]. Fuel, 2017, 210: 154-164. |
| [22] | Liu J, Xia Y G, Sun H D, et al. Theoretical insight into NO formation and reduction at biochar N-sites: influence of different oxygen-containing functional groups[J]. Journal of Environmental Chemical Engineering, 2024, 12(4): 113147. |
| [1] | Cliff S J, Drysdale W, Lewis A C, et al. Evidence of heating-dominated urban NO x emissions[J]. Environmental Science & Technology, 2025, 59(9): 4399-4408. |
| [2] | 中华人民共和国国家发展和改革委员会. 中华人民共和国国民经济和社会发展第十二个五年规划纲要[EB/OL].(2011-09-20)[2025-06-07]. . |
| National Development and Reform Commission. The twelfth Five-Year Plan for national economic and social develop-ment of the People's Republic of China[EB/OL]. (2011-09-20) [2025-06-07]. . | |
| [3] | 国务院.大气污染防治行动计划[EB/OL]. (2013-09-10)[2025-06-07]. . |
| Council State. Air pollution prevention and control action plan[EB/OL]. (2013-09-10) [2025-06-07]. . | |
| [4] | 国务院.“十三五”生态环境保护规划[EB/OL].(2016-11-24)[2025-06-07]. . |
| [23] | Chen P, Gu M Y, Wang D F, et al. Experimental and density functional theory study of the influence mechanism of oxygen on NO heterogeneous reduction in deep air-staged combustion[J]. Combustion and Flame, 2021, 223: 127-141. |
| [24] | Chen P, Gu M Y, Chen X, et al. Study of the reaction mechanism of oxygen to heterogeneous reduction of NO by char[J]. Fuel, 2019, 236: 1213-1225. |
| [25] | Zhang H, Liu J X, Wang X Y, et al. Density functional theory study on two different oxygen enhancement mechanisms during NO-char interaction[J]. Combustion and Flame, 2016, 169: 11-18. |
| [26] | Lu S, Rand B, Bartle K D, et al. Novel oxidation resistant carbon-silicon alloy fibres[J]. Carbon, 1997, 35(10/11): 1485-1493. |
| [27] | Huang Q L, Zhang Q R, Zhao S W, et al. Efficient recovery of rare metal lanthanum from water by MOF-modified biochar: DFT calculation and dynamic adsorption[J]. Biochar, 2025, 7: 29. |
| [28] | Li H X, Tang M H, Wang L, et al. Molecular simulation combined with DFT calculation guided heteroatom-doped biochar rational design for highly selective and efficient CO2 capture[J]. Chemical Engineering Journal, 2024, 481: 148362. |
| [29] | Zhang J J, Huang D R, Shao J G, et al. Activation-free synthesis of nitrogen-doped biochar for enhanced adsorption of CO2 [J]. Journal of Cleaner Production, 2022, 355: 131642. |
| [30] | Maklavany D M, Rouzitalab Z, Amini A M, et al. One-step approach to quaternary (B, N, P, S)-doped hierarchical porous carbon derived from Quercus Brantii for highly selective and efficient CO2 capture: a combined experimental and extensive DFT study[J]. Chemical Engineering Journal, 2023, 453: 139950. |
| [31] | Long Y X, Tian H, Lee C H, et al. Competitive adsorption of H2O and CO2 on nitrogen-doped biochar with rich-oxygen functional groups[J]. Separation and Purification Technology, 2025, 359: 130476. |
| [32] | Yang X P, Jiang D, Cheng X X, et al. Adsorption properties of seaweed-based biochar with the greenhouse gases (CO2, CH4, N2O) through density functional theory (DFT)[J]. Biomass and Bioenergy, 2022, 163: 106519. |
| [33] | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
| [34] | Lu T, Chen F W. Atomic dipole moment corrected Hirshfeld population method[J]. Journal of Theoretical and Computational Chemistry, 2012, 11(1): 163-183. |
| [35] | Lu T, Chen Q X. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions[J]. Chemistry-Methods, 2021, 1(5): 231-239. |
| [36] | Kim B G, Ma X, Chen C, et al. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications[J]. Advanced Functional Materials, 2013, 23(4): 439-445. |
| [37] | Ye Z L, Xie S J, Cao Z Y, et al. High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode[J]. Energy Storage Materials, 2021, 37: 378-386. |
| [38] | Yapp E K Y, Patterson R I A, Akroyd J, et al. Numerical simulation and parametric sensitivity study of optical band gap in a laminar co-flow ethylene diffusion flame[J]. Combustion and Flame, 2016, 167: 320-334. |
| [39] | Zhang L, Zhu W K, Wang Z Z, et al. Investigation of the synergetic regulation of O2/Ar preheating treatment and sodium salt addition on semichar combustion characteristics[J]. Fuel, 2023, 338: 127269. |
| [40] | Dueso C, Mayoral M C, Andrés J M, et al. Towards oxy-steam combustion: the effect of increasing the steam concentration on coal reactivity[J]. Fuel, 2019, 239: 534-546. |
| [41] | Zhang L, Sun R, Wang X Y, et al. Experimental and density functional theory investigation of the NO reduction mechanism by semichars preheated in Ar and CO2/Ar atmospheres[J]. Fuel, 2022, 326: 125080. |
| [42] | Wang Z Z, Xu J, Sun R, et al. Investigation of the NO reduction characteristics of coal char at different conversion degrees under an NO atmosphere[J]. Energy & Fuels, 2017, 31(8): 8722-8732. |
| [1] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [2] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [3] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [4] | Chengyun WU, Haoran SUN. Performance simulation and fuel penalty investigation of civil aircraft air conditioning systems [J]. CIESC Journal, 2025, 76(S1): 351-359. |
| [5] | Huairong ZHOU, Jiawei YI, Abo CAO, Aoxue GUO, Dongliang WANG, Yong YANG, Siyu YANG. Integrated design and performance evaluation of co-electrolysis coupled CO2 indirect hydrogenation methanol synthesis process [J]. CIESC Journal, 2025, 76(9): 4586-4600. |
| [6] |
Sifan WANG, Yifan LI, Jiangbo CHEN, Huan ZHOU.
Thermodynamics and phase diagram modeling of carbonate-type brines Li+, Na+, K+, CO |
| [7] | Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application [J]. CIESC Journal, 2025, 76(9): 4723-4736. |
| [8] | Peng TIAN, Zhonglin ZHANG, Chao REN, Guochao MENG, Xiaogang HAO, Yegang LIU, Qiwang HOU, Abuliti ABUDULA, Guoqing GUAN. Modeling and optimization of rectisol process based on self-heat regeneration [J]. CIESC Journal, 2025, 76(9): 4601-4612. |
| [9] | Guoxiang HU, Yikui ZHU, Hua LONG, Xiaowen LIU, Qingang XIONG. Study on the underlying mechanism of choline chloride-lactic acid molar ratio influencing alkali lignin solubility in choline chloride-lactic acid deep eutectic solvents [J]. CIESC Journal, 2025, 76(9): 4449-4461. |
| [10] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [11] | Qinqin XIE, Junqi WENG, Zhenli LIN, Guanghua YE, Xinggui ZHOU. Effects of industrial catalyst structure on methanol to aromatics in a packed bed reactor [J]. CIESC Journal, 2025, 76(9): 4487-4498. |
| [12] | Ru ZHANG, Chuanqiang ZHU, Dong ZHANG, Zheng HUANG, Yuguo XIAO, Ming LI, Changming LI. Characterisation of nitrogenous pollutants in solid wastes associated with waste incineration process using polymer non-catalytic reduction denitrification [J]. CIESC Journal, 2025, 76(9): 4944-4959. |
| [13] | Guangzheng ZHOU, Zihan ZHONG, Yanqun HUANG, Xuezhong WANG. Intelligent monitoring of crystallization processes based on in situ imaging and image analysis [J]. CIESC Journal, 2025, 76(9): 4351-4368. |
| [14] | Binyi ZHANG, Shaodong SUN, Qian YAO, Wenhe CAI, Huiyu ZHANG, Chengxin LI. Study on hybrid system of coal-to-methanol coupled solid oxide fuel cell [J]. CIESC Journal, 2025, 76(9): 4658-4669. |
| [15] | Aqiang WU, Xiangqun ZHUGE, Tong LIU, Mingxing WANG, Kun LUO. Impact of nanoscale Prussian blue suspension electrolyte on the performance of lithium-oxygen batteries [J]. CIESC Journal, 2025, 76(8): 4310-4317. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||