CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4944-4959.DOI: 10.11949/0438-1157.20250226
• Energy and environmental engineering • Previous Articles
Ru ZHANG1(
), Chuanqiang ZHU2(
), Dong ZHANG1, Zheng HUANG1, Yuguo XIAO1, Ming LI1, Changming LI1(
)
Received:2025-03-06
Revised:2025-05-06
Online:2025-10-23
Published:2025-09-25
Contact:
Chuanqiang ZHU, Changming LI
张茹1(
), 朱传强2(
), 张栋1, 黄政1, 肖雨果1, 李明1, 李长明1(
)
通讯作者:
朱传强,李长明
作者简介:张茹(2000—),女,硕士研究生,19861902925@163.com
基金资助:CLC Number:
Ru ZHANG, Chuanqiang ZHU, Dong ZHANG, Zheng HUANG, Yuguo XIAO, Ming LI, Changming LI. Characterisation of nitrogenous pollutants in solid wastes associated with waste incineration process using polymer non-catalytic reduction denitrification[J]. CIESC Journal, 2025, 76(9): 4944-4959.
张茹, 朱传强, 张栋, 黄政, 肖雨果, 李明, 李长明. 采用高分子非催化还原脱硝的垃圾焚烧工艺伴生固废含氮污染物特征研究[J]. 化工学报, 2025, 76(9): 4944-4959.
Add to citation manager EndNote|Ris|BibTeX
| 热解温度/℃ | 质量/g | 工业分析/% | 元素分析/% | |||||
|---|---|---|---|---|---|---|---|---|
| M | A | V | C | H | N | S | ||
| PNCR | 20.0 | 2.00 | 23.84 | 74.15 | 25.78 | 8.98 | 20.34 | 0.19 |
| 200 | 18.9 | 1.13 | 26.64 | 72.23 | 24.12 | 8.37 | 18.47 | 0.25 |
| 400 | 10.3 | 1.07 | 52.39 | 46.54 | 15.32 | 5.42 | 10.55 | 0.14 |
| 600 | 7.6 | 0.77 | 75.76 | 23.47 | 9.54 | 3.33 | 8.78 | 0.24 |
| 700 | 6.1 | 0.87 | 81.33 | 17.80 | 6.21 | 1.89 | 4.32 | 0.34 |
| 800 | 5.3 | 0.96 | 94.87 | 4.17 | 3.67 | 1.12 | 0.49 | 0.27 |
| 900 | 4.5 | 0.35 | 96.46 | 3.19 | 2.64 | 1.42 | 0.46 | 0.21 |
Table 1 Industrial and elemental analysis of PNCR denitrifier and its pyrolysis residue samples at different pyrolysis temperatures
| 热解温度/℃ | 质量/g | 工业分析/% | 元素分析/% | |||||
|---|---|---|---|---|---|---|---|---|
| M | A | V | C | H | N | S | ||
| PNCR | 20.0 | 2.00 | 23.84 | 74.15 | 25.78 | 8.98 | 20.34 | 0.19 |
| 200 | 18.9 | 1.13 | 26.64 | 72.23 | 24.12 | 8.37 | 18.47 | 0.25 |
| 400 | 10.3 | 1.07 | 52.39 | 46.54 | 15.32 | 5.42 | 10.55 | 0.14 |
| 600 | 7.6 | 0.77 | 75.76 | 23.47 | 9.54 | 3.33 | 8.78 | 0.24 |
| 700 | 6.1 | 0.87 | 81.33 | 17.80 | 6.21 | 1.89 | 4.32 | 0.34 |
| 800 | 5.3 | 0.96 | 94.87 | 4.17 | 3.67 | 1.12 | 0.49 | 0.27 |
| 900 | 4.5 | 0.35 | 96.46 | 3.19 | 2.64 | 1.42 | 0.46 | 0.21 |
Fig.4 NH3 release (a), CO2 release (b), CO2/NH3 release ratio (c) and CO2/NH3 peak concentration ratio (d) from PNCR denitrator at different pyrolysis temperatures
| 样品 | 工业分析/% | 元素分析/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mar | Aar | Var | Car | Har | Nar | Sar | C烧 | H烧 | N烧 | S烧 | |
| 底灰 | 1.81 | 88.60 | 8.52 | 1.57 | 0.84 | 0.16 | 1.15 | 0.17 | 0.68 | 0 | 1.78 |
| 飞灰 | 2.93 | 86.37 | 10.84 | 2.54 | 1.33 | 0.37 | 2.64 | 0.31 | 1.32 | 0.01 | 3.36 |
Table 2 Industrial and elemental analyses of bottom ash and fly ash samples
| 样品 | 工业分析/% | 元素分析/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mar | Aar | Var | Car | Har | Nar | Sar | C烧 | H烧 | N烧 | S烧 | |
| 底灰 | 1.81 | 88.60 | 8.52 | 1.57 | 0.84 | 0.16 | 1.15 | 0.17 | 0.68 | 0 | 1.78 |
| 飞灰 | 2.93 | 86.37 | 10.84 | 2.54 | 1.33 | 0.37 | 2.64 | 0.31 | 1.32 | 0.01 | 3.36 |
| 样品 | 质量分数/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| SiO2 | CaO | Al2O3 | Fe2O3 | SO3 | MgO | TiO2 | K2O | Na2O | |
| 底灰 | 48.46 | 21.43 | 12.62 | 7.67 | 2.02 | 2.21 | 1.14 | 0.83 | 0.82 |
| 飞灰 | 42.46 | 20.13 | 13.35 | 8.37 | 1.94 | 2.73 | 1.06 | 4.41 | 2.73 |
Table 3 Compositional analysis of bottom ash and fly ash samples
| 样品 | 质量分数/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| SiO2 | CaO | Al2O3 | Fe2O3 | SO3 | MgO | TiO2 | K2O | Na2O | |
| 底灰 | 48.46 | 21.43 | 12.62 | 7.67 | 2.02 | 2.21 | 1.14 | 0.83 | 0.82 |
| 飞灰 | 42.46 | 20.13 | 13.35 | 8.37 | 1.94 | 2.73 | 1.06 | 4.41 | 2.73 |
| 元素峰 | 形态分布 | 相对含量/% | |
|---|---|---|---|
| 底灰 | 飞灰 | ||
| C 1s | 芳香碳和烷烃(C—H、C—C) | 74.79 | 75.99 |
| 碳氧单键碳(C—O) | 11.39 | 14.48 | |
| 羰基碳(C=O) | 4.14 | 1.48 | |
| 羧基碳(COO—) | 9.68 | 1.32 | |
| N 1s | 吡啶氮(N-6) | 17.78 | 10.78 |
| 吡咯氮(N-5) | 29.78 | 36.04 | |
| 铵盐(NH4+) | 17.72 | 25.58 | |
| 硝酸盐(NO3-) | 34.72 | 27.6 | |
| S 2p | 亚砜型硫(R—S=O—R') | 10.92 | 13.72 |
| 硫酸盐(SO4—S) | 89.08 | 86.28 | |
Table 4 Composition of surface groups of the samples
| 元素峰 | 形态分布 | 相对含量/% | |
|---|---|---|---|
| 底灰 | 飞灰 | ||
| C 1s | 芳香碳和烷烃(C—H、C—C) | 74.79 | 75.99 |
| 碳氧单键碳(C—O) | 11.39 | 14.48 | |
| 羰基碳(C=O) | 4.14 | 1.48 | |
| 羧基碳(COO—) | 9.68 | 1.32 | |
| N 1s | 吡啶氮(N-6) | 17.78 | 10.78 |
| 吡咯氮(N-5) | 29.78 | 36.04 | |
| 铵盐(NH4+) | 17.72 | 25.58 | |
| 硝酸盐(NO3-) | 34.72 | 27.6 | |
| S 2p | 亚砜型硫(R—S=O—R') | 10.92 | 13.72 |
| 硫酸盐(SO4—S) | 89.08 | 86.28 | |
| 序号 | 化合物名称 | 分子式 | 分子量 | 底灰 | 飞灰 |
|---|---|---|---|---|---|
| 1 | 2-吡咯烷酮 | C4H7NO | 85 | √ | √ |
| 2 | 1-乙烯基-2-吡咯烷酮 | C6H9NO | 111 | √ | √ |
| 3 | 十八烷腈 | C18H35N | 265 | √ | √ |
| 4 | 十六腈 | C16H31N | 237 | × | √ |
| 5 | 芥酸酰胺 | C22H43NO | 338 | × | √ |
| 6 | 2,4-二叔丁基酚 | C14H22O | 206 | √ | × |
| 7 | (Z)-十八-9-烯醇 | C18H36O | 268 | √ | × |
| 8 | 6-叔丁基对甲酚 | C23H32O2 | 340 | √ | × |
| 9 | 十五醇 | C15H32O | 228 | × | √ |
| 10 | 1,16-十六烷二醇 | C16H34O2 | 258 | × | √ |
| 11 | 十六醛 | C16H32O | 240 | × | √ |
| 12 | 十八烷醛 | C18H36O | 268 | × | √ |
| 13 | 二碘甲烷 | CH2I2 | 268 | √ | √ |
| 14 | 十二烷 | C12H26 | 170 | √ | √ |
| 15 | 1,3-二叔丁基苯 | C14H22 | 190 | √ | √ |
| 16 | 正十五烷 | C15H32 | 212 | √ | √ |
| 17 | 十四烷 | C14H30 | 198 | √ | √ |
| 18 | 氯代十六烷 | C16H33Cl | 261 | √ | × |
| 19 | 正十六烷 | C16H34 | 226 | √ | √ |
| 20 | 正十七烷 | C17H36 | 240 | √ | √ |
| 21 | 正二十一烷 | C21H44 | 297 | √ | × |
| 22 | 十八烯 | C18H36 | 252 | √ | × |
| 23 | 正二十四烷 | C24H50 | 339 | √ | √ |
| 24 | 三十烷 | C30H62 | 423 | √ | × |
| 25 | 2,4-二甲基庚烷 | C9H20 | 128 | × | √ |
| 26 | 乙基苯 | C8H10 | 106 | × | √ |
| 27 | 间二甲苯 | C8H10 | 106 | × | √ |
| 28 | 二甲硫基甲烷 | C3H8S2 | 108 | × | √ |
| 29 | 2,2-二甲基戊烷 | C7H16 | 100 | × | √ |
| 30 | 3-乙基辛烷 | C10H22 | 142 | × | √ |
| 31 | (+)-柠檬烯 | C10H16 | 136 | × | √ |
| 32 | 萘 | C10H8 | 128 | × | √ |
| 33 | 十二烷 | C12H26 | 170 | × | √ |
| 34 | 5-甲基十一烷 | C12H26 | 170 | × | √ |
| 35 | 2,6-二甲基十一烷 | C13H28 | 184 | × | √ |
| 36 | 3,3-二甲基已烷 | C8H18 | 114 | × | √ |
| 37 | 碘十一烷 | C11H23I | 282 | × | √ |
| 38 | 正二十烷 | C20H42 | 283 | × | √ |
| 39 | 正十八烷 | C18H38 | 254 | × | √ |
| 40 | 正二十烷 | C20H42 | 283 | × | √ |
Table 5 Types and names of corresponding components of organic matter in fly ash and bottom ash
| 序号 | 化合物名称 | 分子式 | 分子量 | 底灰 | 飞灰 |
|---|---|---|---|---|---|
| 1 | 2-吡咯烷酮 | C4H7NO | 85 | √ | √ |
| 2 | 1-乙烯基-2-吡咯烷酮 | C6H9NO | 111 | √ | √ |
| 3 | 十八烷腈 | C18H35N | 265 | √ | √ |
| 4 | 十六腈 | C16H31N | 237 | × | √ |
| 5 | 芥酸酰胺 | C22H43NO | 338 | × | √ |
| 6 | 2,4-二叔丁基酚 | C14H22O | 206 | √ | × |
| 7 | (Z)-十八-9-烯醇 | C18H36O | 268 | √ | × |
| 8 | 6-叔丁基对甲酚 | C23H32O2 | 340 | √ | × |
| 9 | 十五醇 | C15H32O | 228 | × | √ |
| 10 | 1,16-十六烷二醇 | C16H34O2 | 258 | × | √ |
| 11 | 十六醛 | C16H32O | 240 | × | √ |
| 12 | 十八烷醛 | C18H36O | 268 | × | √ |
| 13 | 二碘甲烷 | CH2I2 | 268 | √ | √ |
| 14 | 十二烷 | C12H26 | 170 | √ | √ |
| 15 | 1,3-二叔丁基苯 | C14H22 | 190 | √ | √ |
| 16 | 正十五烷 | C15H32 | 212 | √ | √ |
| 17 | 十四烷 | C14H30 | 198 | √ | √ |
| 18 | 氯代十六烷 | C16H33Cl | 261 | √ | × |
| 19 | 正十六烷 | C16H34 | 226 | √ | √ |
| 20 | 正十七烷 | C17H36 | 240 | √ | √ |
| 21 | 正二十一烷 | C21H44 | 297 | √ | × |
| 22 | 十八烯 | C18H36 | 252 | √ | × |
| 23 | 正二十四烷 | C24H50 | 339 | √ | √ |
| 24 | 三十烷 | C30H62 | 423 | √ | × |
| 25 | 2,4-二甲基庚烷 | C9H20 | 128 | × | √ |
| 26 | 乙基苯 | C8H10 | 106 | × | √ |
| 27 | 间二甲苯 | C8H10 | 106 | × | √ |
| 28 | 二甲硫基甲烷 | C3H8S2 | 108 | × | √ |
| 29 | 2,2-二甲基戊烷 | C7H16 | 100 | × | √ |
| 30 | 3-乙基辛烷 | C10H22 | 142 | × | √ |
| 31 | (+)-柠檬烯 | C10H16 | 136 | × | √ |
| 32 | 萘 | C10H8 | 128 | × | √ |
| 33 | 十二烷 | C12H26 | 170 | × | √ |
| 34 | 5-甲基十一烷 | C12H26 | 170 | × | √ |
| 35 | 2,6-二甲基十一烷 | C13H28 | 184 | × | √ |
| 36 | 3,3-二甲基已烷 | C8H18 | 114 | × | √ |
| 37 | 碘十一烷 | C11H23I | 282 | × | √ |
| 38 | 正二十烷 | C20H42 | 283 | × | √ |
| 39 | 正十八烷 | C18H38 | 254 | × | √ |
| 40 | 正二十烷 | C20H42 | 283 | × | √ |
| [1] | 张焕亨. PNCR脱硝技术及其试验研究[J]. 锅炉技术, 2021, 52(4): 65-68. |
| Zhang H H. PNCR denitration technology and its experimental research[J]. Boiler Technology, 2021, 52(4): 65-68. | |
| [2] | 王沛, 杨婷婷, 王常春, 等. 垃圾焚烧电厂高分子非催化还原(PNCR)脱硝技术的应用[J]. 江西化工, 2022, 38(6): 109-112. |
| Wang P, Yang T T, Wang C C, et al. Application of polymer non catalytic reduction (PNCR) denitrification technology in waste incineration power plant[J]. Jiangxi Chemical Industry, 2022, 38(6): 109-112. | |
| [3] | 邓靖, 罗慧, 刘玉坤. 生活垃圾焚烧烟气脱硝技术对比[J]. 节能与环保, 2021(7): 66-68. |
| Deng J, Luo H, Liu Y K. Comparison of DeNO x technology in domestic waste incineration[J]. Energy Conservation & Environmental Protection, 2021(7): 66-68. | |
| [4] | 罗晨, 马素霞, 冯于川, 等. 选择性非催化还原烟气脱硝技术的研究现状与发展[J]. 电力科技与环保, 2024, 40(6): 603-614. |
| Luo C, Ma S X, Feng Y X, et al. Research status and development of flue gas denitrification technology in selective non-catalytic reduction[J]. Electric Power Technology and Environmental Protection, 2024, 40(6): 603-614. | |
| [5] | Baleta J, Mikulčić H, Vujanović M, et al. Numerical simulation of urea based selective non-catalytic reduction deNO x process for industrial applications[J]. Energy Conversion and Management, 2016, 125: 59-69. |
| [6] | Liu C X, Wang H J, Zhang Z Y, et al. The latest research progress of NH3-SCR in the SO2 resistance of the catalyst in low temperatures for selective catalytic reduction of NO x [J]. Catalysts, 2020, 10(9): 1034. |
| [7] | 朱传强, 茹晋波, 孙亭亭, 等. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
| Zhu C Q, Ru J B, Sun T T, et al. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. | |
| [8] | 刘超, 施艇, 瞿国栋. PNCR脱硝剂的研发与性能测试及联合脱硝工艺研究[J]. 造纸装备及材料, 2023, 52(8): 115-117. |
| Liu C, Shi T, Qu G D. Development and performance test of PNCR denitrifying agent and study on combined denitrifying process[J]. Papermaking Equipment & Materials, 2023, 52(8): 115-117. | |
| [9] | 杨进, 向植刚, 李欣华. SNCR+PNCR工艺在燃煤热风炉烟气脱硝中的应用[J]. 广东化工, 2020, 47(6): 182-184. |
| Yang J, Xiang Z G, Li X H. Application of SNCR + PNCR process in flue gas denitrification of coal-fired hot blast furnace[J]. Guangdong Chemical Industry, 2020, 47(6): 182-184. | |
| [10] | 刘焕联, 庞博. 垃圾焚烧烟气脱硝工艺选择及案例分析[J]. 环境卫生工程, 2018, 26(6): 19-22. |
| Liu H L, Pang B. Process selection and case analysis on denitration of waste incineration flue gas[J]. Environmental Sanitation Engineering, 2018, 26(6): 19-22. | |
| [11] | 袁伯若, 程虎. 垃圾焚烧烟气超低排放全流程工艺选择[J]. 有色冶金节能, 2021, 37(5): 1-4, 12. |
| Yuan B R, Cheng H. Whole process selection of ultra-low off-gas emission of waste incineration[J]. Energy Saving of Nonferrous Metallurgy, 2021, 37(5): 1-4, 12. | |
| [12] | 朱传强, 茹晋波, 扈明东, 等. 垃圾焚烧电厂高分子非催化还原(PNCR)脱硝技术应用分析[J]. 工程热物理学报, 2021, 42(6): 1600-1607. |
| Zhu C Q, Ru J B, Hu M D, et al. Application analysis of polymer non-catalytic reduction of NO x in waste incineration[J]. Journal of Engineering Thermophysics, 2021, 42(6): 1600-1607. | |
| [13] | Liu W, Wu B B, Bai X X, et al. Migration and emission characteristics of ammonia/ammonium through flue gas cleaning devices in coal-fired power plants of China[J]. Environmental Science & Technology, 2020, 54(1): 390-399. |
| [14] | Zheng C Q, Li X L, Li J Z, et al. Investigation on the ammonia emission characteristics in coal-fired power plants of China[J]. Fuel, 2022, 314: 123046. |
| [15] | 石磊, 牛国平, 马强,等. 燃煤电厂烟气飞灰吸附氨变化规律[J]. 热力发电, 2019, 48(6): 53-57. |
| Shi L, Niu G P, Ma Q, et al. Ammonia adsorption by fly ash in flue gas of a coal-fired power plant[J]. Thermal Power Generation, 2019, 48(6): 53-57. | |
| [16] | 赵宏, 张发捷, 马云龙, 等. 燃煤电厂SCR脱硝氨逃逸迁移规律试验研究[J]. 中国电力, 2021, 54(1): 196-202. |
| Zhao H, Zhang F J, Ma Y L, et al. Test study on the migration characteristics of slip ammonia from the SCR system in the coal-fired power plant[J]. Electric Power, 2021, 54(1): 196-202. | |
| [17] | Cheng T, Zheng C Q, Yang L J, et al. Effect of selective catalytic reduction denitrification on fine particulate matter emission characteristics[J]. Fuel, 2019, 238: 18-25. |
| [18] | Bao J, Mao L, Zhang Y H, et al. Effect of selective catalytic reduction system on fine particle emission characteristics[J]. Energy & Fuels, 2016, 30(2): 1325-1334. |
| [19] | Zhu C Q, Li C M, Zhao Z C, et al. The reaction characteristics and mechanism of polymer non-catalytic reduction (PNCR) for NO x removal[J]. Fuel Processing Technology, 2023, 252: 108002. |
| [20] | Xiao S, Li C B, Zheng X Y, et al. Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NOx removal in waste-to-energy plant[J]. Journal of Environmental Sciences, DOI: 10.1016/j.jes.2025.01.026 . |
| [21] | Tan W F, Wang L A, Huang C, et al. Municipal solid waste incineration fly ash sintered lightweight aggregates and kinetics model establishment[J]. International Journal of Environmental Science and Technology, 2013, 10(3): 465-472. |
| [22] | Liu Z, Li J B, Zhu M M, et al. Investigation into scavenging of sodium and ash deposition characteristics during co-combustion of Zhundong lignite with an oil shale semi-coke of high aluminosilicate in a circulating fluidized bed[J]. Fuel, 2019, 257: 116099. |
| [23] | Xing X Y, Han K X, Liu R J, et al. Study on the rheological properties of fly ash modified asphalt mastics[J]. Coatings, 2023, 13(8): 1307. |
| [24] | 黎永伦, 陈维芳, 王叶贵, 等. 城市垃圾焚烧飞灰物理化学性质及重金属风险分析[J]. 能源研究与信息, 2023, 39(1): 1-8. |
| Li Y L, Chen W F, Wang Y G, et al. Physicochemical properties and risk assessment of heavy metals in the incinerated municipal solid waste fly ash[J]. Energy Research and Information, 2023, 39(1): 1-8. | |
| [25] | 张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程学报, 2021, 15(7): 2344-2355. |
| Zhang Y P, Cui L P, Liu Y F, et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2344-2355. | |
| [26] | 彭磊, 陈兵. 基于同步辐射小角X射线散射和液氮吸附所测分维计算高庙子膨润土膨胀变形[J]. 岩土力学, 2020, 41(8): 2712-2721. |
| Peng L, Chen B. Calculation of swelling deformation of Gaomiaozi bentonite based on fractal dimension measured by synchrotron radiation SAXS and liquid nitrogen adsorption[J]. Rock and Soil Mechanics, 2020, 41(8): 2712-2721. | |
| [27] | 曹潘飞, 吴林. 山西阳煤二矿无烟煤元素赋存特征的XPS研究[J]. 中国矿业, 2022, 31(S1): 198-202. |
| Cao P F, Wu L. XPS study on the occurrence characteristies of anthracite elementsin Yangmei No. 2 Mine, Shanxi Province[J]. China Mining Magazine, 2022, 31(S1): 198-202. | |
| [28] | Dwivedi A, Dwivedi A, Kumar A. Qualitative surface characterization of Indian Permian coal using XPS and FTIR[J]. International Journal of Coal Preparation and Utilization, 2023, 43(7): 1152-1163. |
| [29] | Chen G Y, Li J T, Li K, et al. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge[J]. Fuel, 2020, 273: 117772. |
| [30] | Liu W J, Shao Z G, Xu Y. Emission characteristics of nitrogen and sulfur containing pollutants during the pyrolysis of oily sludge with and without catalysis[J]. Journal of Hazardous Materials, 2021, 401: 123820. |
| [31] | 贾进章, 邢迎欢, 李斌. 山西阳煤无烟煤分子结构特征分析[J]. 化学研究与应用, 2022, 34(10): 2311-2320. |
| Jia J Z, Xing Y H, Li B. Analysis of molecular structure characteristics of anthracite in Shanxi Yangquan coal[J]. Chemical Research and Applications, 2022, 34(10): 2311-2320. | |
| [32] | Lin B C, Alhadj Mallah M M, Huang Q X, et al. Effects of temperature and potassium compounds on the transformation behavior of sulfur during pyrolysis of oily sludge[J]. Energy & Fuels, 2017, 31(7): 7004-7014. |
| [33] | 王学军, 庄心生, 齐辉. 薄膜爽滑剂芥酸酰胺研究进展[J]. 塑料工业, 2022, 50(7): 1-5, 11. |
| Wang X J, Zhuang X S, Qi H. Research progress on erucamide as film slip agent[J]. Plastics Industry, 2022, 50(7): 1-5, 11. | |
| [34] | 谷沁洋. 城市生活垃圾焚烧飞灰碳酸化固化特性研究[D]. 南京: 东南大学, 2022. |
| Gu Q Y. Study on the carbonation and solidification characteristics of fly ash from municipal waste incineration [D]. Nanjing: Southeast University, 2022. | |
| [35] | 黄一萌, 马晓春, 张海洲, 等. Ni0.09Ti0.91O2纳米管负载铜的催化脱硝性能和机理[J]. 稀有金属材料与工程, 2024, 53(5): 1417-1428. |
| Huang Y M, Ma X C, Zhang H Z, et al. Catalytic denitration performance and mechanism of copper-loaded Ni0.09Ti0.91O2 nanotube[J]. Rare Metal Materials and Engineering, 2024, 53(5): 1417-1428. | |
| [36] | Li C M, Zeng H, Liu P L, et al. The recycle of red mud as excellent SCR catalyst for removal of NO x [J]. RSC Advances, 2017, 7(84): 53622-53630. |
| [37] | Zheng J F, Wang J, Yang F L, et al. Adsorption and catalytic oxidation of residual NH3 on coal ash after selective non-catalytic reduction in coal-fired boilers[J]. Chemosphere, 2023, 317: 137765. |
| [38] | Zheng J F, Wang J, Yang F L, et al. Influence and mechanism of the adsorption and reactions of residual NH3, NO, and O2 on coal ash after the selective noncatalytic reduction process[J]. Fuel, 2023, 343: 127826. |
| [1] | Songwei SHI, Cheng ZHAO, Shuai LIU, Yuxuan YING, Mi YAN. Removal of biogas H2S using iron-rich fly ash coupled with Fe-Zn/Al2O3 [J]. CIESC Journal, 2025, 76(8): 4239-4247. |
| [2] | Xiaoling WANG, Shaoqing WANG, Yungang ZHAO, Fangzhe CHANG, Ruifeng MU. Mechanism of organic Ca transformation during coal hydropyrolysis: insights from ReaxFF molecular dynamics simulations [J]. CIESC Journal, 2025, 76(8): 4297-4309. |
| [3] | Shuyu WANG, Zhiliang XUE, Jing ZHU, Xin FU, Yonggang ZHOU, Yiming HU, Qunxing HUANG. Experimental study on mass and morphological character during scrap tire pyrolysis [J]. CIESC Journal, 2025, 76(7): 3459-3467. |
| [4] | Lifang GONG, Meihui REN, Jichun JIANG, Guangzhao GUO, Hongyun HU, Yongda HUANG, Hong YAO. Study on on-line monitoring and selective catalytic reduction removal of aromatic hydrocarbon from the flue gas of waste incineration [J]. CIESC Journal, 2025, 76(6): 3018-3028. |
| [5] | Dongling XU, Yue MA, Lu GONG, Guili MA, Jinke WANG, Fengzhi GUO, Haolun WANG, Sijia LI, Shuyuan LI, Changtao YUE. Co-pyrolysis study of oil shale and bituminous coal in fixed fluidized bed reactor [J]. CIESC Journal, 2025, 76(4): 1742-1753. |
| [6] | Liang LIU, Jiajun WU, Mengxia QING, Guangya ZHOU, Zihang HE. Characteristics of landed oil sludge pyrolysis and energy balance analysis of the process system [J]. CIESC Journal, 2025, 76(4): 1779-1787. |
| [7] | Zhongqing LI, Zhiyuan WANG, Xiaojian LUAN, Sikai LIANG, Kai WANG. Preparation of MnO coating based on electroplating-low oxygen partial pressure treatment and coking inhibition properties during thermal cracking of naphtha [J]. CIESC Journal, 2025, 76(3): 1050-1063. |
| [8] | Fang XU, Rui ZHANG, Da CUI, Qing WANG. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation [J]. CIESC Journal, 2025, 76(3): 1253-1263. |
| [9] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
| [10] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
| [11] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
| [12] | Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon [J]. CIESC Journal, 2024, 75(9): 3338-3347. |
| [13] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
| [14] | Hongzhe YAO, Feiyu HUANG, Song YANG, Mei ZHONG, Zhenghua DAI. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil [J]. CIESC Journal, 2024, 75(7): 2644-2655. |
| [15] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||