CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6708-6717.DOI: 10.11949/0438-1157.20250494
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xinye YUAN1(
), Xianbo XING2,3, Denghua LIU3, Weitao DING3, Borui FAN1, Hua ZHONG1, Kai HAN1(
)
Received:2025-05-06
Revised:2025-07-15
Online:2026-01-23
Published:2025-12-31
Contact:
Kai HAN
袁新烨1(
), 邢显博2,3, 刘登华3, 丁伟涛3, 范博瑞1, 钟华1, 韩凯1(
)
通讯作者:
韩凯
作者简介:袁新烨(2001—),男,硕士研究生,232311099@csu.edu.cn
基金资助:CLC Number:
Xinye YUAN, Xianbo XING, Denghua LIU, Weitao DING, Borui FAN, Hua ZHONG, Kai HAN. Effect of silicon crystallinity on electrochemical performance for chemical vapor deposited silicon-carbon composites[J]. CIESC Journal, 2025, 76(12): 6708-6717.
袁新烨, 邢显博, 刘登华, 丁伟涛, 范博瑞, 钟华, 韩凯. 气相沉积硅碳中硅结晶度对电化学性能的影响[J]. 化工学报, 2025, 76(12): 6708-6717.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Schematic diagram of the preparation of silicon-carbon composite materials via CVD: (1) The process involves flowing silane gas, thermally decomposing it, and depositing silicon into the porous carbon structure; (2) Thermally driven carbon deposition from a gaseous precursor to form an encapsulating layer
| 样品 | 粒度/μm | ||
|---|---|---|---|
| D10 | D50 | D90 | |
| Si@C-550℃ | 4.1 | 7.8 | 13.4 |
| Si@C-600℃ | 4.1 | 7.7 | 13.5 |
| Si@C-700℃ | 4.0 | 7.9 | 14.0 |
| Si@C-800℃ | 3.8 | 7.7 | 13.8 |
Table 1 Particle size of silicon-carbon
| 样品 | 粒度/μm | ||
|---|---|---|---|
| D10 | D50 | D90 | |
| Si@C-550℃ | 4.1 | 7.8 | 13.4 |
| Si@C-600℃ | 4.1 | 7.7 | 13.5 |
| Si@C-700℃ | 4.0 | 7.9 | 14.0 |
| Si@C-800℃ | 3.8 | 7.7 | 13.8 |
Fig.4 (a) The XRD patterns of Si@C; (b) Powder electrical resistivity; (c) Raman spectroscopy; (d) Deconvolution and fitting of the first-order Raman characteristic peak of silicon; (e) The crystallization rate of silicon; (f) The ID/IG ratio of carbon in silicon-carbon
| 样品 | 首圈放电比容量/(mAh·g-1) | 库仑效率 | ||
|---|---|---|---|---|
| 0.8 V | 1.0 V | 1.5 V | ||
| Si@C-550℃ | 1599 | 79.98% | 86.96% | 91.62% |
| Si@C-600℃ | 1586 | 79.02% | 85.83% | 91.04% |
| Si@C-700℃ | 1354 | 75.34% | 82.98% | 88.68% |
| Si@C-800℃ | 709 | 64.77% | 73.94% | 80.97% |
Table 2 Coulomb efficiency of silicon-carbon at different charging voltages
| 样品 | 首圈放电比容量/(mAh·g-1) | 库仑效率 | ||
|---|---|---|---|---|
| 0.8 V | 1.0 V | 1.5 V | ||
| Si@C-550℃ | 1599 | 79.98% | 86.96% | 91.62% |
| Si@C-600℃ | 1586 | 79.02% | 85.83% | 91.04% |
| Si@C-700℃ | 1354 | 75.34% | 82.98% | 88.68% |
| Si@C-800℃ | 709 | 64.77% | 73.94% | 80.97% |
Fig.6 (a) dQ/dV curve of the first charge-discharge cycle; (b) EIS Nyquist plot; (c) GITT curves and DLi+; (d) and (e) the DLi+vs voltage profiles during discharge and charge, respectively
| [1] | Goodenough J B, Kim Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694. |
| [2] | Zhong H, Liu D H, Yuan X Y, et al. Advanced micro/nanostructure silicon-based anode materials for high-energy lithium-ion batteries: from liquid- to solid-state batteries[J]. Energy & Fuels, 2024, 38(9): 7693-7732. |
| [3] | Zülke A, Korotkin I, Foster J M, et al. Parametrisation and use of a predictive DFN model for a high-energy NCA/gr-SiO x battery[J]. Journal of the Electrochemical Society, 2021, 168(12): 120522. |
| [4] | Cheng Z L, Jiang H, Zhang X L, et al. Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(26): 2301109. |
| [5] | Li Z L, Yang Y Z, Wang J, et al. Sandwich-like structure C/SiO x @graphene anode material with high electrochemical performance for lithium ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(11): 1947-1953. |
| [6] | Qi Y, Wang G, Li S, et al. Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 397: 125380. |
| [7] | 邱治文, 吴爱民, 王杰, 等. Si基锂离子电池负极材料研究进展[J]. 化工进展, 2021, 40(S1): 253-269. |
| Qiu Z W, Wu A M, Wang J, et al. Research progress of Si-based anode materials for Li-ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 253-269. | |
| [8] | McDowell M T, Lee S W, Harris J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13(2): 758-764. |
| [9] | Chae S, Choi S H, Kim N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(1): 110-135. |
| [10] | Jin Y, Li S, Kushima A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017, 10(2): 580-592. |
| [11] | 程伟江, 汪何琦, 高翔, 等. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
| Cheng W J, Wang H Q, Gao X, et al. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries[J]. CIESC Journal, 2023, 74(2): 571-584. | |
| [12] | Zhang Y X, Wu B R, Mu G, et al. Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage[J]. Journal of Energy Chemistry, 2022, 64: 615-650. |
| [13] | Yao Y, McDowell M T, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters, 2011, 11(7): 2949-2954. |
| [14] | Huang X, Cen D C, Wei R, et al. Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high-performance anode for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26854-26862. |
| [15] | Salah M, Hall C, Alvarez de Eulate E, et al. Compressively stressed silicon nanoclusters as an antifracture mechanism for high-performance lithium-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39195-39204. |
| [16] | Pang D, Weng W, Zhou J, et al. Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts[J]. Journal of Energy Chemistry, 2021, 55: 102-107. |
| [17] | Wang W, Kumta P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4(4): 2233-2241. |
| [18] | 孙国庆, 李海波, 丁志阳, 等. 硅基负极材料的研究进展[J]. 化工学报, 2025, 76(7): 3197-3211. |
| Sun G Q, Li H B, Ding Z Y, et al. Research progress of silicon-based anode materials[J]. China Industrial Economics, 2025, 76(7): 3197-3211. | |
| [19] | Li H D, Li H Y, Lai Y Z, et al. Revisiting the preparation progress of nano-structured Si anodes toward industrial application from the perspective of cost and scalability[J]. Advanced Energy Materials, 2022, 12(7): 2102181. |
| [20] | Sun C, Sun L, Zhang Y X, et al. Reduced graphene oxide-modified NiCo-phosphates on Ni foam enabling high areal capacitances for asymmetric supercapacitors[J]. Journal of Materials Science & Technology, 2021, 90: 255-263. |
| [21] | Bai L Q, Zhang Y H, Tong W S, et al. Graphene for energy storage and conversion: synthesis and interdisciplinary applications[J]. Electrochemical Energy Reviews, 2020, 3(2): 395-430. |
| [22] | Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery[J]. Journal of Energy Chemistry, 2018, 27(4): 1067-1090. |
| [23] | Zhao Y J, Ding C H, Hao Y N, et al. Neat design for the structure of electrode to optimize the lithium-ion battery performance[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27106-27115. |
| [24] | Keles O, Karahan B D, Eryilmaz L, et al. Superlattice-structured films by magnetron sputtering as new era electrodes for advanced lithium-ion batteries[J]. Nano Energy, 2020, 76: 105094. |
| [25] | Quan L J, Su Q L, Lei H Z, et al. Integrated prelithiation and SEI engineering for high-performance silicon anodes in lithium-ion batteries[J]. National Science Review, 2025, 12(7): nwaf084. |
| [26] | Baddour-Hadjean R, Pereira-Ramos J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chemical Reviews, 2010, 110(3): 1278-1319. |
| [27] | Jones R R, Hooper D C, Zhang L W, et al. Raman techniques: fundamentals and frontiers[J]. Nanoscale Research Letters, 2019, 14(1): 231. |
| [28] | Smit C, Swaaij V, Donker H, et al. Determining the material structure of microcrystalline silicon from Raman spectra[J]. Journal of Applied Physics, 2003, 94: 3582-3588. |
| [29] | Brenot R, Vanderhaghen R, Drevillon B, et al. Contactless electronic transport analysis of microcrystalline silicon[J]. Thin Solid Films, 1999, 337(1/2): 63-66. |
| [30] | Ma Z X, Liao X B, Kong G L, et al. Raman scattering of nanocrystalline silicon embedded in SiO2 [J]. Science in China Series A: Mathematics, 2000, 43(4): 414-420. |
| [31] | Tsu D, Chao B, Ovshinsky S, et al. Effect of hydrogen dilution on the structure of amorphous silicon alloys[J]. Applied Physics Letters, 1997, 71: 1317-1319. |
| [32] | Richter H, Wang Z P, Ley L. The one phonon Raman spectrum in microcrystalline silicon[J]. Solid State Communications, 1981, 39(5): 625-629. |
| [33] | Yue G Z, Lorentzen J D, Lin J, et al. Photoluminescence and Raman studies in thin-film materials: transition from amorphous to microcrystalline silicon[J]. Applied Physics Letters, 1999, 75(4): 492-494. |
| [34] | Zi J, Büscher H, Falter C. Raman shifts in Si nanocrystals[J]. Applied Physics Letters, 1996, 69: 200-202. |
| [35] | Wang C D, Li Y, Ostrikov K, et al. Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 646: 966-972. |
| [36] | Li Y C, Zheng X Y, Cao Z, et al. Unveiling the mechanisms into Li-trapping induced (ir)reversible capacity loss for silicon anode[J]. Energy Storage Materials, 2023, 55: 660-668. |
| [1] | Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models [J]. CIESC Journal, 2025, 76(9): 4369-4382. |
| [2] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [3] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [4] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [5] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [6] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [7] | Guoqing SUN, Haibo LI, Zhiyang DING, Wenhui GUO, Hao XU, Yanxia ZHAO. Research progress of silicon based anode materials [J]. CIESC Journal, 2025, 76(7): 3197-3211. |
| [8] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [9] | Peiqiang CHEN, Qun ZHENG, Yuting JIANG, Chunhua XIONG, Jinmao CHEN, Xudong WANG, Long HUANG, Man RUAN, Wanli XU. Effects of electrolyte flow rate and current density on the output performance of seawater-activated batteries [J]. CIESC Journal, 2025, 76(7): 3235-3245. |
| [10] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [11] | Jia KANG, Huan LIU, Haiyan LI, Maoliang LUO, Hong YAO. Corrosion behavior and coating performance of carbon steel in HCl/NaOH thermal medium in wide temperature zone [J]. CIESC Journal, 2025, 76(6): 2872-2885. |
| [12] | Kun LI, Rui HUANG, Jun CONG, Haitao MA, Longjiao CHANG, Shaohua LUO. Simultaneous evolution of structural morphology and lithium storage properties in NCM622 cathode material [J]. CIESC Journal, 2025, 76(4): 1831-1840. |
| [13] | Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries [J]. CIESC Journal, 2025, 76(4): 1422-1431. |
| [14] | Wei LIN, Jian DU, Chen YAO, Jiahao ZHU, Wei WANG, Xiaotao ZHENG, Jianmin XU, Jiuyang YU. Study on ion transport and nucleation mechanism in electrochemical water softening process [J]. CIESC Journal, 2025, 76(4): 1788-1799. |
| [15] | Yifan TONG, Ningshuang ZHANG, Xingpeng CAI, Chengyu LI, Shiyou LI. Research on modification of layered oxide cathode materials for sodium-ion battery driven by high-entropy strategy: progress, mechanism, and future [J]. CIESC Journal, 2025, 76(12): 6218-6235. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||