CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6465-6476.DOI: 10.11949/0438-1157.20250732
• Intelligent process engineering • Previous Articles Next Articles
Yi TAO1(
), Chen ZHANG1, Hongxiang ZHU2, Tong QIU1(
)
Received:2025-07-04
Revised:2025-08-21
Online:2026-01-23
Published:2025-12-31
Contact:
Tong QIU
通讯作者:
邱彤
作者简介:陶一(2001—),女,硕士研究生,taoy24@mails.tsinghua.edu.cn
CLC Number:
Yi TAO, Chen ZHANG, Hongxiang ZHU, Tong QIU. Substance flow analysis method based on molecular-level model for catalytic reforming process[J]. CIESC Journal, 2025, 76(12): 6465-6476.
陶一, 张晨, 朱洪翔, 邱彤. 基于催化重整分子级模型的物质流量分析方法[J]. 化工学报, 2025, 76(12): 6465-6476.
Add to citation manager EndNote|Ris|BibTeX
| 矩阵名称 | 矩阵维度 | 矩阵元素含义 |
|---|---|---|
| M1 | ||
| M2 | ||
| 对角矩阵, |
Table 1 Information in the structured matrices of reaction networks
| 矩阵名称 | 矩阵维度 | 矩阵元素含义 |
|---|---|---|
| M1 | ||
| M2 | ||
| 对角矩阵, |
| 序号 | 反应 温度/℃ | 反应压力/MPa | 质量空速/h-1 | 进料量/(g/h) | 催化剂 种类 |
|---|---|---|---|---|---|
| 1 | 482 | 0.6 | 1.94 | 293 | 1 |
| 2 | 487 | 0.6 | 1.94 | 293 | 1 |
| 3 | 492 | 0.6 | 1.94 | 293 | 1 |
| 4 | 497 | 0.6 | 1.94 | 293 | 1 |
| 5 | 502 | 0.6 | 1.94 | 293 | 1 |
| 6 | 497 | 0.4 | 1.94 | 293 | 2 |
| 7 | 497 | 0.5 | 1.94 | 293 | 2 |
| 8 | 497 | 0.6 | 1.94 | 293 | 2 |
| 9 | 497 | 0.7 | 1.94 | 293 | 2 |
| 10 | 497 | 0.8 | 1.94 | 293 | 2 |
Table 2 Experimental operating conditions
| 序号 | 反应 温度/℃ | 反应压力/MPa | 质量空速/h-1 | 进料量/(g/h) | 催化剂 种类 |
|---|---|---|---|---|---|
| 1 | 482 | 0.6 | 1.94 | 293 | 1 |
| 2 | 487 | 0.6 | 1.94 | 293 | 1 |
| 3 | 492 | 0.6 | 1.94 | 293 | 1 |
| 4 | 497 | 0.6 | 1.94 | 293 | 1 |
| 5 | 502 | 0.6 | 1.94 | 293 | 1 |
| 6 | 497 | 0.4 | 1.94 | 293 | 2 |
| 7 | 497 | 0.5 | 1.94 | 293 | 2 |
| 8 | 497 | 0.6 | 1.94 | 293 | 2 |
| 9 | 497 | 0.7 | 1.94 | 293 | 2 |
| 10 | 497 | 0.8 | 1.94 | 293 | 2 |
| [1] | Shakor Z M, AbdulRazak A A, Sukkar K A. A detailed reaction kinetic model of heavy naphtha reforming[J]. Arabian Journal for Science and Engineering, 2020, 45(9): 7361-7370. |
| [2] | Iranshahi D, Karimi M, Amiri S, et al. Modeling of naphtha reforming unit applying detailed description of kinetic in continuous catalytic regeneration process[J]. Chemical Engineering Research and Design, 2014, 92(9): 1704-1727. |
| [3] | Hou W F, Su H Y, Hu Y Y, et al. Modeling, simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen plus platform[J]. Chinese Journal of Chemical Engineering, 2006, 14(5): 584-591. |
| [4] | Jiang H B, Sun Y, Jiang S B, et al. Reactor model of counter-current continuous catalyst-regenerative reforming process toward real time optimization[J]. Energy & Fuels, 2021, 35(13): 10770-10785. |
| [5] | Froment G F. Single event kinetic modeling of complex catalytic processes[J]. Catalysis Reviews, 2005, 47(1): 83-124. |
| [6] | Froment G F. Fundamental kinetic modeling of catalytic hydrocarbon conversion processes[J]. Reviews in Chemical Engineering, 2013, 29(6): 385-412. |
| [7] | 周齐宏, 胡山鹰, 李有润, 等. 催化重整过程的分子模拟与优化[J]. 计算机与应用化学, 2004, 21(3): 447-452. |
| Zhou Q H, Hu S Y, Li Y R, et al. Molecular modelling and optimisation for catalytic reforming[J]. Computers and Applied Chemistry, 2004, 21(3): 447-452. | |
| [8] | 王睿通, 刘纪昌, 仲从伟, 等. 基于结构导向集总的催化重整分子水平反应动力学模型[J]. 石油学报(石油加工), 2020, 36(1): 95-105. |
| Wang R T, Liu J C, Zhong C W, et al. Reaction kinetic model for catalytic reforming based on structure oriented lumping[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 95-105. | |
| [9] | Smith R. Kinetic analysis of naphtha reforming with platinum catalyst[J]. Chemical Engineering Progress, 1959, 55: 76-80. |
| [10] | Krane H G, Groh A B, Schulman B L, et al. Reactions in catalytic reforming of naphthas[C]//World Petroleum Congress Proceedings. New York, USA, 1959: 39-53. |
| [11] | Henningsen J, Bundgaard-Nielson M. Catalytic reforming[J]. British Chemical Engineering, 1970, 15(11): 1433-1436. |
| [12] | Ali S A, Alshareef A H, Theravalappil R, et al. Molecular kinetic modeling of catalytic naphtha reforming: a review of complexities and solutions[J]. Catalysis Reviews, 2023, 65(4): 1358-1411. |
| [13] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
| Wang Z Z, Suo H S, Zhao X L. Research and construction of digital twin intelligent ethylene plant[J]. CIESC Journal, 2023, 74(3): 1175-1186. | |
| [14] | 常斐, 师人博, 刘士花, 等. 石化行业产品生命周期碳足迹评价研究现状及展望[J]. 化工学报, 2025, 76(2): 419-437. |
| Chang F, Shi R B, Liu S H, et al. Product life cycle carbon footprint evaluation for petrochemical industry[J]. CIESC Journal, 2025, 76(2): 419-437. | |
| [15] | Wei W, Bennett C A, Tanaka R, et al. Computer aided kinetic modeling with KMT and KME[J]. Fuel Processing Technology, 2008, 89(4): 350-363. |
| [16] | Wei W, Bennett C A, Tanaka R, et al. Detailed kinetic models for catalytic reforming[J]. Fuel Processing Technology, 2008, 89(4): 344-349. |
| [17] | Klein M T. Software tools for molecular-level kinetic modeling of refinery and petrochemical reactors[C]//26th Annual Saudi-Japan Symposium on Technology in Petroleum Refining & Petrochemicals. Dhahran, Saudi Arabia, 2016. |
| [18] | Zhou X, Hou Z, Wang J G, et al. Molecular-level kinetic model for C12 continuous catalytic reforming[J]. Energy & Fuels, 2018, 32(6): 7078-7085. |
| [19] | 姚宏哲, 黄飞宇, 杨松, 等. 重质油高温快速热解自动反应网络的动力学建模[J]. 化工学报, 2024, 75(7): 2644-2655. |
| Yao H Z, Huang F Y, Yang S, et al. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil[J]. CIESC Journal, 2024, 75(7): 2644-2655. | |
| [20] | 张霖宙, 陈政宇, 吕文进, 等. 石油加工分子管理平台构建[J]. 中国科学: 化学, 2018, 48(4): 411-426. |
| Zhang L Z, Chen Z Y, Lyu W J, et al. Development of petroleum refining molecular management modeling platform[J]. Scientia Sinica (Chimica), 2018, 48(4): 411-426. | |
| [21] | 王永春. 催化重整分子尺度反应动力学模型构建[D]. 北京: 中国石油大学(北京), 2022. |
| Wang Y C. Development of molecular-level kinetic model and reactor model for reforming[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
| [22] | Wu J, Chen G X, Chen A Q, et al. Molecular-level modeling of naphtha continuous catalytic reforming process[J]. Chemical Engineering Science, 2025, 309: 121430. |
| [23] | Bi K X, Chen T J, Qiu T, et al. Reaction network simplification and key routes extraction for steam cracking process[J]. Fuel, 2023, 352: 129030. |
| [24] | Lu T F, Law C K. On the applicability of directed relation graphs to the reduction of reaction mechanisms[J]. Combustion and Flame, 2006, 146(3): 472-483. |
| [25] | Pepiot-Desjardins P, Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms[J]. Combustion and Flame, 2008, 154(1/2): 67-81. |
| [26] | Quann R J, Jaffe S B. Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures[J]. Industrial & Engineering Chemistry Research, 1993, 31(11): 2483-2497. |
| [27] | Quann R J, Jaffe S B. Building useful models of complex reaction systems in petroleum refining[J]. Chemical Engineering Science, 1996, 51(10): 1615-1635. |
| [28] | Quann R J. Modeling the chemistry of complex petroleum mixtures[J]. Environmental Health Perspectives, 1998, 106(): 1441-1448. |
| [29] | Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, WA, Australia Piscataway, NJ: IEEE, 1995: 1942-1948. |
| [30] | Wu Y W, Zhang N. Molecular characterization of gasoline and diesel streams[J]. Industrial & Engineering Chemistry Research, 2010, 49(24): 12773-12782. |
| [31] | Meyers R A. Handbook of Petroleum Refining Processes[M]. 3rd ed. New York: McGraw-Hill Education, 2003. |
| [32] | Sinfelt J H, Hurwitz H, Rohrer J C. Kinetics of n-pentane isomerization over Pt-Al2O3 catalyst[J]. The Journal of Physical Chemistry, 1960, 64(7): 892-894. |
| [33] | Mills G A, Heinemann H, Milliken T H, et al. (houdriforming reactions) catalytic mechanism[J]. Industrial & Engineering Chemistry, 1953, 45(1): 134-137. |
| [34] | 天津大学物理化学教研室. 物理化学-下册[M]. 3版. 北京: 高等教育出版社, 1993: 263-273. |
| Physical Chemistry Teaching and Research Office of Tianjin university. Physical Chemistry-volume Ⅱ[M]. 3rd ed. Beijing: Higher Education Press, 1993: 263-273. | |
| [35] | Watson B A, Klein M T, Harding R H. Catalytic cracking of alkylbenzenes: modeling the reaction pathways and mechanisms[J]. Applied Catalysis A: General, 1997, 160(1): 13-39. |
| [36] | Marrero J, Gani R. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183/184: 183-208. |
| [1] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [2] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [3] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [4] | Zhihong JIANG, Qian LEI, Yinjun ZHU, Zhigang LEI, Honglin CHEN. Study on physical property model and enrichment process of trioxane system [J]. CIESC Journal, 2025, 76(9): 4872-4881. |
| [5] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [6] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [7] | Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis [J]. CIESC Journal, 2025, 76(9): 4474-4486. |
| [8] | Xuewen LI, Zhihong WANG, Yang GAO, Ming'ou WU, Wenhao MA, Renmin TAN. Multi-objective optimization of amine-based desulfurization regeneration system integrated with heat pump technology [J]. CIESC Journal, 2025, 76(9): 4563-4577. |
| [9] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| [10] | Yilei ZHOU, Zhi LI, Xin PENG. Design of self-optimizing control structure for continuous catalytic reforming reaction process based on surrogate model [J]. CIESC Journal, 2025, 76(9): 4499-4511. |
| [11] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [12] | Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems [J]. CIESC Journal, 2025, 76(8): 4108-4118. |
| [13] | Yaqing HE, Weiqing WANG, Yingtian CHI, Jiarong LI, Haiyun WANG, Xinyan ZHANG, Bowen LIU. Optimization analysis of 3D modelling of SOEC stacks taking into account inhomogeneities [J]. CIESC Journal, 2025, 76(8): 4129-4144. |
| [14] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [15] | Tao WANG, Guangming LI, Qiuxia HU, Jing XU. Optimization of warpage process for two-color injection products based on temporal evolution particle swarm optimization algorithm [J]. CIESC Journal, 2025, 76(7): 3403-3415. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||