CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6477-6485.DOI: 10.11949/0438-1157.20250743
• Intelligent process engineering • Previous Articles Next Articles
Wenjin ZHOU(
), Yatong ZHANG, Zhitong ZHAO, Wei ZHANG(
)
Received:2025-07-07
Revised:2025-07-29
Online:2026-01-23
Published:2025-12-31
Contact:
Wenjin ZHOU, Wei ZHANG
通讯作者:
周文晋,张玮
作者简介:周文晋(1994—),男,博士,讲师,zhouwenjin@ tyut.edu.cn
基金资助:CLC Number:
Wenjin ZHOU, Yatong ZHANG, Zhitong ZHAO, Wei ZHANG. Simultaneous optimization of pressure operating path and heat exchange matches in work and heat integration[J]. CIESC Journal, 2025, 76(12): 6477-6485.
周文晋, 张雅桐, 赵志仝, 张玮. 功热集成中压力操作路径和换热匹配的同步优化[J]. 化工学报, 2025, 76(12): 6477-6485.
Add to citation manager EndNote|Ris|BibTeX
| 流股 | bar | bar | CP/ (kW·K-1) | h/ (kW·m-2·K-1) | ||
|---|---|---|---|---|---|---|
| 1(LP-Fe1) | 298.15 | 298.15 | 1 | 8 | 37.49 | 0.1 |
| 2(LP-Fe2) | 298.15 | 298.15 | 1 | 8 | 10.09 | 0.1 |
| 3(Flue gas) | 650.15 | 348.15 | — | — | 43.77 | 0.1 |
| 4(HP-Re1) | 298.15 | 298.15 | 8 | 1 | 27.40 | 0.1 |
| 5(HP-Re2) | 298.15 | 298.15 | 8 | 1 | 4.40 | 0.1 |
| 6(Cold air) | 288.15 | 600.15 | — | — | 34.70 | 0.1 |
| HU | 650.00 | 649.00 | — | — | — | 1.0 |
| CU | 288.15 | 289.15 | — | — | — | 1.0 |
Table 1 Stream data
| 流股 | bar | bar | CP/ (kW·K-1) | h/ (kW·m-2·K-1) | ||
|---|---|---|---|---|---|---|
| 1(LP-Fe1) | 298.15 | 298.15 | 1 | 8 | 37.49 | 0.1 |
| 2(LP-Fe2) | 298.15 | 298.15 | 1 | 8 | 10.09 | 0.1 |
| 3(Flue gas) | 650.15 | 348.15 | — | — | 43.77 | 0.1 |
| 4(HP-Re1) | 298.15 | 298.15 | 8 | 1 | 27.40 | 0.1 |
| 5(HP-Re2) | 298.15 | 298.15 | 8 | 1 | 4.40 | 0.1 |
| 6(Cold air) | 288.15 | 600.15 | — | — | 34.70 | 0.1 |
| HU | 650.00 | 649.00 | — | — | — | 1.0 |
| CU | 288.15 | 289.15 | — | — | — | 1.0 |
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| Coem/(USD·kW-1·a-1) | 455.04 | Af | 0.18 |
| Coge/(USD·kW-1·a-1) | 364.03 | 1.4 | |
| HU/(USD·kW-1·a-1) | 400 | 0.85 | |
| CU/(USD·kW-1·a-1) | 100 | 0.9 | |
| 压缩机投资费/(USD·a-1) | 51104.85w0.62 | Rc 范围 | 1.1~8 |
| 膨胀机投资费/(USD·a-1) | 2585.47w0.81 | Rt 范围 | 0.125~0.8 |
| 电动机或发电机投资费/(USD·a-1) | 985.47w0.62 | 变压流股温度范围/K | 150~600 |
| 离散化后温度误差允许的上界值/K | 2 | 换热器投资费用/(USD·a-1) | 93500.12+602.96area+0.149(area)2 |
Table 2 Other parameters
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| Coem/(USD·kW-1·a-1) | 455.04 | Af | 0.18 |
| Coge/(USD·kW-1·a-1) | 364.03 | 1.4 | |
| HU/(USD·kW-1·a-1) | 400 | 0.85 | |
| CU/(USD·kW-1·a-1) | 100 | 0.9 | |
| 压缩机投资费/(USD·a-1) | 51104.85w0.62 | Rc 范围 | 1.1~8 |
| 膨胀机投资费/(USD·a-1) | 2585.47w0.81 | Rt 范围 | 0.125~0.8 |
| 电动机或发电机投资费/(USD·a-1) | 985.47w0.62 | 变压流股温度范围/K | 150~600 |
| 离散化后温度误差允许的上界值/K | 2 | 换热器投资费用/(USD·a-1) | 93500.12+602.96area+0.149(area)2 |
| 项目 | (ts1, m1) | (ts1, m2) | (ts2, m1) | (ts2, m2) | cps1 | cus1 |
|---|---|---|---|---|---|---|
| (cs1, m1) | 1 | 1 | 1 | 1 | ||
| (cs1, m2) | 1 | 1 | ||||
| (cs2, m1) | 1 | |||||
| (cs2, m2) | 1 | |||||
| hps1 | 1 | 1 | 1 | 1 |
Table 3 Heat exchange matches determined through optimization
| 项目 | (ts1, m1) | (ts1, m2) | (ts2, m1) | (ts2, m2) | cps1 | cus1 |
|---|---|---|---|---|---|---|
| (cs1, m1) | 1 | 1 | 1 | 1 | ||
| (cs1, m2) | 1 | 1 | ||||
| (cs2, m1) | 1 | |||||
| (cs2, m2) | 1 | |||||
| hps1 | 1 | 1 | 1 | 1 |
| 项目 | Pavão等[ | Santos等[ | Lin 等[ | 本研究① |
|---|---|---|---|---|
| TAC/(USD·a-1) | 9011115.00 | 8919187.84 | 8829551.00 | 8761480.49 |
| 回收热量/kW | 14648.90 | 14721.10 | 14777.70 | 15000.19 |
| 回收功/kW | 3822.40 | 3870.40 | 3951.10 | 3930.15 |
| 热公用工程消耗/kW | 0 | 0 | 0 | 0 |
| 冷公用工程消耗/kW | 8935.50 | 8818.30 | 8473.00 | 7945.28 |
| 电力消耗/kW | 6544.30 | 6426.10 | 6082.90 | 5908.83 |
| 电力产生/kW | 0 | 0 | 0 | 0 |
| 换热器数量 | 10 | 9 | 14 | 12 |
| 变压单元数量 | 4 | 5 | 5 | 6 |
Table 4 Comparison of integrated optimization results of work and heat in this article and literatures
| 项目 | Pavão等[ | Santos等[ | Lin 等[ | 本研究① |
|---|---|---|---|---|
| TAC/(USD·a-1) | 9011115.00 | 8919187.84 | 8829551.00 | 8761480.49 |
| 回收热量/kW | 14648.90 | 14721.10 | 14777.70 | 15000.19 |
| 回收功/kW | 3822.40 | 3870.40 | 3951.10 | 3930.15 |
| 热公用工程消耗/kW | 0 | 0 | 0 | 0 |
| 冷公用工程消耗/kW | 8935.50 | 8818.30 | 8473.00 | 7945.28 |
| 电力消耗/kW | 6544.30 | 6426.10 | 6082.90 | 5908.83 |
| 电力产生/kW | 0 | 0 | 0 | 0 |
| 换热器数量 | 10 | 9 | 14 | 12 |
| 变压单元数量 | 4 | 5 | 5 | 6 |
| [1] | Raimi D, Zhu Y, Newell R G, et al. Global Energy Outlook 2024: Peaks or Plateaus? [R]. Washington, DC: Resources for the Future, 2024. |
| [2] | Fu C, Vikse M, Gundersen T. Work and heat integration: an emerging research area[J]. Energy, 2018, 158: 796-806. |
| [3] | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
| [4] | Xu Y, Liu W W, Zhang L, et al. A comprehensive review of recent advancements and developments in heat exchanger network synthesis techniques[J]. Science China Technological Sciences, 2024, 67(2): 335-356. |
| [5] | Zhuang Y, Liu L L, Liu Q L, et al. Step-wise synthesis of work exchange networks involving heat integration based on the transshipment model[J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1052-1060. |
| [6] | Razib M S, Hasan M M F, Karimi I A. Preliminary synthesis of work exchange networks[J]. Computers & Chemical Engineering, 2012, 37: 262-277. |
| [7] | Gundersen T, Berstad D O, Aspelund A. Extending pinch analysis and process integration into pressure and fluid phase considerations[J]. Chemical Engineering Transactions, 2009, 18: 33-38. |
| [8] | Wechsung A, Aspelund A, Gundersen T, et al. Synthesis of heat exchanger networks at subambient conditions with compression and expansion of process streams[J]. AIChE Journal, 2011, 57(8): 2090-2108. |
| [9] | Onishi V C, Ravagnani M A S S, Caballero J A. Simultaneous synthesis of heat exchanger networks with pressure recovery: optimal integration between heat and work[J]. AIChE Journal, 2014, 60(3): 893-908. |
| [10] | Yee T F, Grossmann I E. Simultaneous optimization models for heat integration ( Ⅱ ) : Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
| [11] | Huang K F, Karimi I A. Simultaneous synthesis approaches for cost-effective heat exchanger networks[J]. Chemical Engineering Science, 2013, 98: 231-245. |
| [12] | Huang K F, Karimi I A. Work-heat exchanger network synthesis (WHENS)[J]. Energy, 2016, 113: 1006-1017. |
| [13] | Nair S K, Rao H N, Karimi I A. Framework for work-heat exchange network synthesis (WHENS)[J]. AIChE Journal, 2018, 64(7): 2472-2485. |
| [14] | Yu H S, Fu C, Gundersen T. Work exchange networks (WENs) and work and heat exchange networks (WHENs): a review of the current state of the art[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 507-525. |
| [15] | 杨蕊, 庄钰, 刘琳琳, 等. 功热交换网络综合的研究进展[J]. 化工进展, 2019, 38(6): 2550-2558. |
| Yang R, Zhuang Y, Liu L L, et al. Research progress on work and heat exchange network synthesis[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2550-2558. | |
| [16] | Furman K C, Sahinidis N V. Computational complexity of heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2001, 25(9/10): 1371-1390. |
| [17] | Pavão L V, Caballero J A, Ravagnani M A S S, et al. A pinch-based method for defining pressure manipulation routes in work and heat exchange networks[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 109989. |
| [18] | Santos L F, Costa C B B, Caballero J A, et al. Synthesis and optimization of work and heat exchange networks using an MINLP model with a reduced number of decision variables[J]. Applied Energy, 2020, 262: 114441. |
| [19] | Lin Q C, Chang C L, Liao Z W, et al. Efficient strategy for the synthesis of work and heat exchange networks[J]. Industrial & Engineering Chemistry Research, 2021, 60(4): 1756-1773. |
| [20] | 林渠成, 廖祖维. 基于分解算法的功热交换网络多目标优化[J]. 化工学报, 2022, 73(11): 5047-5055. |
| Lin Q C, Liao Z W. Multi-objective optimization of work and heat exchange networks based on a decomposition algorithm[J]. CIESC Journal, 2022, 73(11): 5047-5055. | |
| [21] | Lin Q C, Liao Z W, Bagajewicz M J. Globally optimal design of minimal WHEN systems using enumeration[J]. AIChE Journal, 2023, 69(1): e17878. |
| [22] | Lin Q C, Liao Z W. Super-targeting of non-minimal WHEN systems[J]. Chemical Engineering Science, 2024, 296: 120224. |
| [23] | Zhuang Y, Xing Y F, Zhang L, et al. An enhanced superstructure-based model for work-integrated heat exchange network considering inter-stage multiple utilities optimization[J]. Computers & Chemical Engineering, 2021, 152: 107388. |
| [24] | Ibrić N, Fu C, Gundersen T. Simultaneous optimization of work and heat exchange networks[J]. Energies, 2024, 17(7): 1753. |
| [25] | Rossato I G, Costa C B B, da Silva Sá Ravagnani M A, et al. Optimization of pressure manipulation routes considering the rigorous calculation of thermodynamic properties[J]. Applied Thermal Engineering, 2025, 265: 125548. |
| [26] | Braccia L, Luppi P, Vallarella A J, et al. Generalized simultaneous optimization model for synthesis of heat and work exchange networks[J]. Computers & Chemical Engineering, 2022, 168: 108036. |
| [27] | Yu H S, Fu C, Vikse M, et al. Identifying optimal thermodynamic paths in work and heat exchange network synthesis[J]. AIChE Journal, 2019, 65(2): 549-561. |
| [28] | Grossmann I E, Trespalacios F. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming[J]. AIChE Journal, 2013, 59(9): 3276-3295. |
| [29] | Zhou W J, Yang D, Liu L L, et al. Two-stage mathematical approach for automated heat exchanger network synthesis considering cost and numbers of subnetworks[J]. Chemical Engineering Science, 2025, 306: 121225. |
| [30] | Fu C, Gundersen T. Heat and work integration: fundamental insights and applications to carbon dioxide capture processes[J]. Energy Conversion and Management, 2016, 121: 36-48. |
| [31] | Pavão L V, Miranda C B, Caballero J A, et al. Multiperiod work and heat integration[J]. Energy Conversion and Management, 2021, 227: 113587. |
| [1] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [2] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [3] | Xiaofeng CAO, Huahai ZHANG, Jiangyun WANG, Limin WANG. Structural design and flow characteristics of conical gas laminar flow element [J]. CIESC Journal, 2025, 76(9): 4440-4448. |
| [4] | Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis [J]. CIESC Journal, 2025, 76(9): 4474-4486. |
| [5] | Peng TIAN, Zhonglin ZHANG, Chao REN, Guochao MENG, Xiaogang HAO, Yegang LIU, Qiwang HOU, Abuliti ABUDULA, Guoqing GUAN. Modeling and optimization of rectisol process based on self-heat regeneration [J]. CIESC Journal, 2025, 76(9): 4601-4612. |
| [6] | Jing ZHAO, Shuchen DONG, Gaoyang LI, Youke HUANG, Haosen SHI, Shuwen MIAO, Chenyan TAN, Tangqi ZHU, Yongshuai LI, Hui PAN, Hao LING. Simulation and optimization of battery performance based on the electrochemical model [J]. CIESC Journal, 2025, 76(9): 4922-4932. |
| [7] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [8] | Ke LI, Haolin XIE, Jian WEN. Multi-objective genetic algorithm optimization for thermal insulation performance of liquid hydrogen tank with multiple vapor-cooled shields [J]. CIESC Journal, 2025, 76(8): 4217-4227. |
| [9] | Tao WANG, Guangming LI, Qiuxia HU, Jing XU. Optimization of warpage process for two-color injection products based on temporal evolution particle swarm optimization algorithm [J]. CIESC Journal, 2025, 76(7): 3403-3415. |
| [10] | Jinjiang WANG, Zhenjie LU, Weizheng AN, Fengyun YANG, Xiaogang QIN. Research and prospect of early warning and diagnosis technology for ORC power generation system process [J]. CIESC Journal, 2025, 76(7): 3137-3152. |
| [11] | Xiaolong WU, Xiaohuang HUANG, Yuan XIAO, Linghai SHAN, Jiahui YE, Guomin CUI. Reserve empty node strategy applied to optimization of heat exchanger networks [J]. CIESC Journal, 2025, 76(7): 3388-3402. |
| [12] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [13] | Xiaotong XIANG, Xudong DUAN, Simin WANG. Research on performance of PEM electrolyzer driven by multi-objective optimization [J]. CIESC Journal, 2025, 76(6): 2626-2637. |
| [14] | Haohao ZHANG, Li GUO, Xinyi LI, Jinyi CHEN, Chao HUA, Ping LU. Research progress on optimal design and dynamic control of dividing wall column [J]. CIESC Journal, 2025, 76(6): 2434-2450. |
| [15] | Minggang GUO, Xiaohang YANG, Yan DAI, Panpan MI, Shixin MA, Gaohong HE, Wu XIAO, Fujun CUI. Optimal design of integration process for helium extraction from helium-poor pipeline natural gas with diversified products [J]. CIESC Journal, 2025, 76(5): 2251-2261. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||