CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 6040-6057.DOI: 10.11949/0438-1157.20250623
• Energy and environmental engineering • Previous Articles Next Articles
Li ZOU1(
), Li MA1(
), Pengyu ZHANG1, Gaoming WEI1(
), Ruizhi GUO1, Qinxin ZHAO2
Received:2025-06-10
Revised:2025-08-29
Online:2025-12-19
Published:2025-11-25
Contact:
Li MA, Gaoming WEI
邹立1(
), 马砺1(
), 张鹏宇1, 魏高明1(
), 郭睿智1, 赵钦新2
通讯作者:
马砺,魏高明
作者简介:邹立(1995—),男,博士,讲师,15594803880@163.com
基金资助:CLC Number:
Li ZOU, Li MA, Pengyu ZHANG, Gaoming WEI, Ruizhi GUO, Qinxin ZHAO. Hydrogen production performance and reaction kinetics of biomass gasification enhanced by calcined carbide slag[J]. CIESC Journal, 2025, 76(11): 6040-6057.
邹立, 马砺, 张鹏宇, 魏高明, 郭睿智, 赵钦新. 煅烧电石渣强化生物质气化制氢特性及其反应动力学研究[J]. 化工学报, 2025, 76(11): 6040-6057.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 工业分析/% (质量,空气干燥基) | 元素分析/% (质量,空气干燥基) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 水分 | 挥发分 | 灰分 | 固定碳① | 碳 | 氢 | 氧① | 氮 | 硫 | |
| 玉米芯 | 5.09 | 78.53 | 1.59 | 14.79 | 42.46 | 6.03 | 42.98 | 1.82 | 0.03 |
Table 1 Compositional analysis results of corn cob sample
| 样品 | 工业分析/% (质量,空气干燥基) | 元素分析/% (质量,空气干燥基) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 水分 | 挥发分 | 灰分 | 固定碳① | 碳 | 氢 | 氧① | 氮 | 硫 | |
| 玉米芯 | 5.09 | 78.53 | 1.59 | 14.79 | 42.46 | 6.03 | 42.98 | 1.82 | 0.03 |
| 主要成分 | 质量分数/% |
|---|---|
| CaO | 85.50 |
| SiO2 | 7.48 |
| Al2O3 | 3.90 |
| MgO | 2.37 |
| Fe2O3 | 0.21 |
| SO3 | 0.54 |
Table 2 Compositional analysis results of calcined carbide slag
| 主要成分 | 质量分数/% |
|---|---|
| CaO | 85.50 |
| SiO2 | 7.48 |
| Al2O3 | 3.90 |
| MgO | 2.37 |
| Fe2O3 | 0.21 |
| SO3 | 0.54 |
| 样品 | 分子式 | 相对分子质量 | 纯度/% |
|---|---|---|---|
| 碳酸钙 | CaCO3 | 100.09 | 99.0 |
| 硝酸铝 | Al(NO3)3·9H2O | 375.13 | 99.0 |
| 醋酸镁 | Mg(CH3COO)2·9H2O | 214.40 | 99.0 |
| 正硅酸四乙酯 | C8H20O4Si | 208.33 | 98.0 |
Table 3 Properties related to calcium carbonate and inert oxide precursors
| 样品 | 分子式 | 相对分子质量 | 纯度/% |
|---|---|---|---|
| 碳酸钙 | CaCO3 | 100.09 | 99.0 |
| 硝酸铝 | Al(NO3)3·9H2O | 375.13 | 99.0 |
| 醋酸镁 | Mg(CH3COO)2·9H2O | 214.40 | 99.0 |
| 正硅酸四乙酯 | C8H20O4Si | 208.33 | 98.0 |
| 序号 | 机理函数 | 积分形式G(α) | 微分形式f(α) |
|---|---|---|---|
| 扩散模型 | |||
| 1 | 一维扩散,1D | ||
| 2 | 二维扩散-Valensi,2D-V | ||
| 3 | 二维扩散-Jander,n=1/2,2D-J | ||
| 4 | 三维扩散-Jander,n=2,3D-J | ||
| 5 | 三维扩散-Zhuravlev Leskin Tempelman,3D-ZLT | ||
| 6 | 三维扩散-Ginstling Broushtsin,3D-GB | ||
| 速率方程模型 | |||
| 7 | Avrami Erofeev,n=1/2,AE2 | ||
| 8 | Avrami Erofeev,n=1/3,AE3 | ||
| 9 | Avrami Erofeev,n=1/4,AE4 | ||
| 反应级数模型 | |||
| 10 | 反应级数,n=2,RO2 | ||
| 11 | 反应级数,n=3,RO3 | ||
| 12 | 化学反应,CR | ||
| 几何收缩模型 | |||
| 13 | 收缩圆柱体,n=2,CA2 | ||
| 14 | 收缩球状,n=3,3D-CV3 | ||
| 指数幂模型 | |||
| 15 | 一级指数幂,n=1,EP1 | ||
| 16 | 二级指数幂,n=2,EP2 | ||
| 幂函数模型 | |||
| 17 | n=1/2, MP2 | ||
| 18 | n=1/3, MP3 | ||
Table 4 Common kinetic mechanism functions for solid-phase pyrolysis gasification reactions
| 序号 | 机理函数 | 积分形式G(α) | 微分形式f(α) |
|---|---|---|---|
| 扩散模型 | |||
| 1 | 一维扩散,1D | ||
| 2 | 二维扩散-Valensi,2D-V | ||
| 3 | 二维扩散-Jander,n=1/2,2D-J | ||
| 4 | 三维扩散-Jander,n=2,3D-J | ||
| 5 | 三维扩散-Zhuravlev Leskin Tempelman,3D-ZLT | ||
| 6 | 三维扩散-Ginstling Broushtsin,3D-GB | ||
| 速率方程模型 | |||
| 7 | Avrami Erofeev,n=1/2,AE2 | ||
| 8 | Avrami Erofeev,n=1/3,AE3 | ||
| 9 | Avrami Erofeev,n=1/4,AE4 | ||
| 反应级数模型 | |||
| 10 | 反应级数,n=2,RO2 | ||
| 11 | 反应级数,n=3,RO3 | ||
| 12 | 化学反应,CR | ||
| 几何收缩模型 | |||
| 13 | 收缩圆柱体,n=2,CA2 | ||
| 14 | 收缩球状,n=3,3D-CV3 | ||
| 指数幂模型 | |||
| 15 | 一级指数幂,n=1,EP1 | ||
| 16 | 二级指数幂,n=2,EP2 | ||
| 幂函数模型 | |||
| 17 | n=1/2, MP2 | ||
| 18 | n=1/3, MP3 | ||
| 样品 | 比表面积/(m2·g-1) | 总孔容/(cm3·g-1) | 平均孔径/nm |
|---|---|---|---|
| CaO | 11.58 | 0.049 | 16.81 |
| CCS | 10.69 | 0.044 | 15.93 |
| CCS-Al2 | 8.32 | 0.034 | 13.25 |
| CCS-Mg2 | 9.35 | 0.032 | 13.90 |
| CCS-Si2 | 10.35 | 0.036 | 13.90 |
Table 5 BET test results for sorbents
| 样品 | 比表面积/(m2·g-1) | 总孔容/(cm3·g-1) | 平均孔径/nm |
|---|---|---|---|
| CaO | 11.58 | 0.049 | 16.81 |
| CCS | 10.69 | 0.044 | 15.93 |
| CCS-Al2 | 8.32 | 0.034 | 13.25 |
| CCS-Mg2 | 9.35 | 0.032 | 13.90 |
| CCS-Si2 | 10.35 | 0.036 | 13.90 |
| 序号 | 吸附剂 | CaO/C | 蒸汽流量/(g·min-1) | 最佳机理函数 | Ea/(kJ·mol-1) | ||
|---|---|---|---|---|---|---|---|
| 阶段Ⅰ | 阶段Ⅱ | 阶段Ⅰ | 阶段Ⅱ | ||||
| 1 | CCS | 0 | 1.0 | 2D-J | 1D | 12.18 | 55.06 |
| 2 | CCS | 0.5 | 1.0 | 2D-J | CA2 | 12.99 | 52.12 |
| 3 | CCS | 1.0 | 1.0 | 2D-J | CA2 | 15.84 | 78.66 |
| 4 | CCS | 1.5 | 1.0 | 2D-J | CA2 | 21.83 | 85.40 |
| 5 | CCS | 1.0 | 0 | 2D-J | CA2 | 16.60 | 73.03 |
| 6 | CCS | 1.0 | 1.5 | 2D-J | CA2 | 15.53 | 46.99 |
| 7 | CCS | 1.0 | 2.0 | 2D-J | CA2 | 15.25 | 38.18 |
| 8 | 纯CaO | 1.0 | 1.0 | 2D-J | CA2 | 15.98 | 76.44 |
| 9 | CCS-Si2 | 1.0 | 1.0 | 2D-J | CA2 | 17.27 | 86.02 |
Table 6 Optimal mechanism function and apparent activation energy for the biomass isothermal gasification process
| 序号 | 吸附剂 | CaO/C | 蒸汽流量/(g·min-1) | 最佳机理函数 | Ea/(kJ·mol-1) | ||
|---|---|---|---|---|---|---|---|
| 阶段Ⅰ | 阶段Ⅱ | 阶段Ⅰ | 阶段Ⅱ | ||||
| 1 | CCS | 0 | 1.0 | 2D-J | 1D | 12.18 | 55.06 |
| 2 | CCS | 0.5 | 1.0 | 2D-J | CA2 | 12.99 | 52.12 |
| 3 | CCS | 1.0 | 1.0 | 2D-J | CA2 | 15.84 | 78.66 |
| 4 | CCS | 1.5 | 1.0 | 2D-J | CA2 | 21.83 | 85.40 |
| 5 | CCS | 1.0 | 0 | 2D-J | CA2 | 16.60 | 73.03 |
| 6 | CCS | 1.0 | 1.5 | 2D-J | CA2 | 15.53 | 46.99 |
| 7 | CCS | 1.0 | 2.0 | 2D-J | CA2 | 15.25 | 38.18 |
| 8 | 纯CaO | 1.0 | 1.0 | 2D-J | CA2 | 15.98 | 76.44 |
| 9 | CCS-Si2 | 1.0 | 1.0 | 2D-J | CA2 | 17.27 | 86.02 |
| 吸附剂 | 生物质 | 气化工况 | 循环次数 | H2产率/(ml· | CO2产率/(ml· | 文献 |
|---|---|---|---|---|---|---|
| Ca2Fe2O5-CaO | 松木 | 850℃, 60 min, S/B = 5 | 1 | 593 | 505 | [ |
| NiO/Al2O3-煅烧白云石 | 玉米秸秆 | 650℃, 40 min, S/B = 2, CaO/C = 0.6 | 1 | 341 | 65 | [ |
| Al2O3-CaO | 污泥 | 650℃, 100 min, S/B = 10, CaO/C = 1.0 | 1 | 329 | 31 | [ |
| CeO2/Ca12Al14O33-CaO | 甘蔗渣 | 650℃, 40 min, S/B = 12, CaO/C = 1.0 | 10 | 130 | 15 | [ |
| SiO2-煅烧电石渣 | 玉米芯 | 650℃, 15 min, S/B = 30, CaO/C = 1.0 | 10 | 381 | 78 | 本研究 |
Table 7 Comparison of the results of this study with those of other studies
| 吸附剂 | 生物质 | 气化工况 | 循环次数 | H2产率/(ml· | CO2产率/(ml· | 文献 |
|---|---|---|---|---|---|---|
| Ca2Fe2O5-CaO | 松木 | 850℃, 60 min, S/B = 5 | 1 | 593 | 505 | [ |
| NiO/Al2O3-煅烧白云石 | 玉米秸秆 | 650℃, 40 min, S/B = 2, CaO/C = 0.6 | 1 | 341 | 65 | [ |
| Al2O3-CaO | 污泥 | 650℃, 100 min, S/B = 10, CaO/C = 1.0 | 1 | 329 | 31 | [ |
| CeO2/Ca12Al14O33-CaO | 甘蔗渣 | 650℃, 40 min, S/B = 12, CaO/C = 1.0 | 10 | 130 | 15 | [ |
| SiO2-煅烧电石渣 | 玉米芯 | 650℃, 15 min, S/B = 30, CaO/C = 1.0 | 10 | 381 | 78 | 本研究 |
| [1] | 孙仲顺, 刘根, 程春昱, 等. 生物质热化学转化制备绿氢研究进展[J]. 化工进展, 2025, 44(5): 1-16. |
| Sun Z S, Liu G, Cheng C Y, et al. Research progress on thermochemical conversion of biomass to green hydrogen[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 1-16. | |
| [2] | 张智, 赵苑瑾, 蔡楠. 中国氢能产业技术发展现状及未来展望[J]. 天然气工业, 2022, 42(5): 156-165. |
| Zhang Z, Zhao Y J, Cai N. Technological development status and prospect of hydrogen energy industry in China[J]. Natural Gas Industry, 2022, 42(5): 156-165. | |
| [3] | 国家发改委. 氢能产业发展中长期规划(2021—2035年)[J]. 稀土信息, 2022, 34(4): 26-32. |
| The National Development and Reform Commission (NDRC). Medium- and long-term plan for the development of the hydrogen energy industry (2021—2035)[J]. Rare Earth Information, 2022, 34(4): 26-32. | |
| [4] | Rubinsin N J, Karim N A, Timmiati S N, et al. An overview of the enhanced biomass gasification for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 49: 1139-1164. |
| [5] | 谢华清, 张卫东, 林贺勇, 等. 吸附强化焦油蒸汽重整制取氢气[J]. 化工学报, 2018, 69(S2): 466-472. |
| Xie H Q, Zhang W D, Lin H Y, et al. Hydrogen production via sorption-enhanced steam reforming of tar[J]. CIESC Journal, 2018, 69(S2): 466-472. | |
| [6] | Li C C, Liu R, Zheng J H, et al. Production of hydrogen-rich syngas from absorption-enhanced steam gasification of biomass with conch shell-based absorbents[J]. International Journal of Hydrogen Energy, 2021, 46(49): 24956-24964. |
| [7] | 耿一琪, 郭彦霞, 樊飙, 等. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报, 2021, 49(7): 998-1013. |
| Geng Y Q, Guo Y X, Fan B, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013. | |
| [8] | 郭红霞, 南雁, 寇晓晨, 等. 钙基CO2吸附剂的惰性掺杂和形貌调控研究进展[J]. 化工进展, 2019, 38(1): 457-466. |
| Guo H X, Nan Y, Kou X C, et al. Research on doping modification and morphology control of calcium-based CO2 sorbents[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 457-466. | |
| [9] | Vanga G, Gattia D M, Stendardo S, et al. Novel synthesis of combined CaO-Ca12Al14O33-Ni sorbent-catalyst material for sorption enhanced steam reforming processes[J]. Ceramics International, 2019, 45(6): 7594-7605. |
| [10] | Luo C, Zheng Y, Ding N, et al. Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11778-11784. |
| [11] | Wu S F, Zhu Y Q. Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2701-2706. |
| [12] | Li Y J, Su M Y, Xie X, et al. CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis[J]. Applied Energy, 2015, 145: 60-68. |
| [13] | Salvador C, Lu D, Anthony E J, et al. Enhancement of CaO for CO2 capture in an FBC environment[J]. Chemical Engineering Journal, 2003, 96(1-3): 187-195. |
| [14] | Yang H P, Wang D Q, Li B, et al. Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass[J]. Bioresource Technology, 2018, 249: 744-750. |
| [15] | Wang E N, Zhu Z T, Li R R, et al. Ni/CaO-based dual-functional materials for calcium-looping CO2 capture and dry reforming of methane: progress and challenges[J]. Chemical Engineering Journal, 2024, 482: 148476. |
| [16] | Yang H, Ji G Z, Clough P T, et al. Kinetics of catalytic biomass pyrolysis using Ni-based functional materials[J]. Fuel Processing Technology, 2019, 195: 106145. |
| [17] | Sun Z, Xu B, Rony A H, et al. Thermogravimetric and kinetics investigation of pine wood pyrolysis catalyzed with alkali-treated CaO/ZSM-5[J]. Energy Conversion and Management, 2017, 146: 182-194. |
| [18] | Fong M J B, Loy A C M, Chin B L F, et al. Catalytic pyrolysis of Chlorella vulgaris: kinetic and thermodynamic analysis[J]. Bioresource Technology, 2019, 289: 121689. |
| [19] | Li H, Wang Y Y, Zhou N, et al. Applications of calcium oxide-based catalysts in biomass pyrolysis/gasification—a review[J]. Journal of Cleaner Production, 2021, 291: 125826. |
| [20] | Gao M Q, Cheng C, Miao Z Y, et al. Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite[J]. Energy, 2023, 268: 126657. |
| [21] | Zou L, He X, Yang W J, et al. Co-pyrolysis of peanut shell with municipal sludge: reaction mechanism, product distribution, and synergy[J]. Environmental Science and Pollution Research, 2023, 30(41): 94081-94096. |
| [22] | Wang Y G, Zou L, Shao H S, et al. Co-combustion of high alkali coal with municipal sludge: thermal behaviour, kinetic analysis, and micro characteristic[J]. Science of the Total Environment, 2022, 838: 156489. |
| [23] | Liu W Q, Feng B, Wu Y Q, et al. Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environmental Science & Technology, 2010, 44(8): 3093-3097. |
| [24] | Huang C F, Xu M, Huai X L, et al. Template-free synthesis of hollow CaO/Ca2SiO4 nanoparticle as a cyclically stable high-capacity CO2 sorbent[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2171-2179. |
| [25] | Liu X T, Shi J F, He L, et al. Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 572-580. |
| [26] | Li X Q, Chen Z, Liu P, et al. Feasibility assessment of recycling waste aluminum dross as a basic catalyst for biomass pyrolysis to produce hydrogen-rich gas[J]. International Journal of Hydrogen Energy, 2023, 48(93): 36361-36376. |
| [27] | Ayub Y, Ren J Z, Shi T, et al. Poultry litter valorization: development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm[J]. Energy, 2023, 263: 125839. |
| [28] | Zou L, Bai Y Y, Xiu H R, et al. Research on the preparation of CO2 renewable sorbent from calcium-based waste: towards enhanced biomass gasification for H2 production[J]. Fuel, 2023, 352: 129135. |
| [29] | Li B, Wei L Y, Yang H P, et al. The enhancing mechanism of calcium oxide on water gas shift reaction for hydrogen production[J]. Energy, 2014, 68: 248-254. |
| [30] | Doranehgard M H, Samadyar H, Mesbah M, et al. High-purity hydrogen production with in situ CO2 capture based on biomass gasification[J]. Fuel, 2017, 202: 29-35. |
| [31] | Sun Z, Chen S Y, Russell C K, et al. Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: investigation of inner-looping redox reaction and promoting mechanisms[J]. Applied Energy, 2018, 212: 931-943. |
| [32] | Li B, Yang H P, Wei L Y, et al. Absorption-enhanced steam gasification of biomass for hydrogen production: effects of calcium-based absorbents and NiO-based catalysts on corn stalk pyrolysis-gasification[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5840-5848. |
| [33] | Chen S Y, Zhao Z H, Soomro A, et al. Hydrogen-rich syngas production via sorption-enhanced steam gasification of sewage sludge[J]. Biomass and Bioenergy, 2020, 138: 105607. |
| [34] | Yan X Y, Li Y J, Ma X T, et al. CeO2-modified CaO/Ca12Al14O33 bi-functional material for CO2 capture and H2 production in sorption-enhanced steam gasification of biomass[J]. Energy, 2020, 192: 116664. |
| [1] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [2] | Zequan LI, Tianyu CAI, Jiajun LIU, Qizhi CHEN, Peiwen XIAO, Xiaofei XU, Shuangliang ZHAO. Synthesis and application of lignin-based flocculants [J]. CIESC Journal, 2025, 76(9): 4709-4722. |
| [3] | Jiaqing ZOU, Zhaoyu ZHANG, Jianguo ZHANG, Boyu ZHANG, Dingsheng LIU, Qing MAO, Ting WANG, Jianjun LI. Generation and evolution of bubbles in channels of bipolar plates of alkaline water electrolyzers for producing hydrogen [J]. CIESC Journal, 2025, 76(9): 4786-4799. |
| [4] | Chen HE, Mingfei LU, Lingjin WANG, Xiaoying XU, Pengbo DONG, Wentao ZHAO, Wuqiang LONG. Experimental and simulation study of lean-burn laminar flow of ammonia-methanol high-pressure mixture [J]. CIESC Journal, 2025, 76(8): 4248-4258. |
| [5] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [6] | Yitong ZHOU, Mingxi ZHOU, Ruochen LIU, Shuang YE, Weiguang HUANG. Technical and economic analysis on hydrogen based direct reduction steelmaking co-driven by photovoltaic and power grid [J]. CIESC Journal, 2025, 76(8): 4318-4330. |
| [7] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [8] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [9] | Yuhong TIAN, Zhuangzhuang DU, Huifang XU, Ziqiang ZHU, Yucong WANG. Preparation of ZIF-8 based porous liquid and its SO2 adsorption performance [J]. CIESC Journal, 2025, 76(8): 4284-4296. |
| [10] | Songwei SHI, Cheng ZHAO, Shuai LIU, Yuxuan YING, Mi YAN. Removal of biogas H2S using iron-rich fly ash coupled with Fe-Zn/Al2O3 [J]. CIESC Journal, 2025, 76(8): 4239-4247. |
| [11] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [12] | Xincheng LU, Xiaolei GUO, Shicheng WANG, Haifeng LU, Haifeng LIU. Study on comminution characteristics of straw biomass [J]. CIESC Journal, 2025, 76(7): 3539-3551. |
| [13] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [14] | Jiaxiang CHEN, Wei ZHOU, Xuewei ZHANG, Lijie WANG, Yuming HUANG, Yang YU, Miaoting SUN, Wanjing LI, Junshu YUAN, Hongbo ZHANG, Xiaoxiao MENG, Jihui GAO, Guangbo ZHAO. Simulation study on the hydrogen production performance of a two-dimensional PEMWE model under pulsed voltage [J]. CIESC Journal, 2025, 76(7): 3521-3530. |
| [15] | Xuyang LU, Qiang XU, Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO. The CO reduction characteristics of magnetite oxygen carriers in chemical looping hydrogen production systems [J]. CIESC Journal, 2025, 76(7): 3286-3294. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||