CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 6058-6065.DOI: 10.11949/0438-1157.20250270
• Energy and environmental engineering • Previous Articles
Jun LUAN1(
), Lei SONG1, Mingming GE1, Zhijie SHANG1, Xiaoming LI1, Gang LI1, Xinze LI2, Wenjing DU2(
)
Received:2025-03-18
Revised:2025-06-17
Online:2025-12-19
Published:2025-11-25
Contact:
Wenjing DU
栾俊1(
), 宋磊1, 葛明明1, 尚志杰1, 李小明1, 李刚1, 李新泽2, 杜文静2(
)
通讯作者:
杜文静
作者简介:栾俊(1978—),男,高级工程师,13969009366@163.com
基金资助:CLC Number:
Jun LUAN, Lei SONG, Mingming GE, Zhijie SHANG, Xiaoming LI, Gang LI, Xinze LI, Wenjing DU. Performance analysis of combined heat and power system equipped with electric boiler and thermal storage device[J]. CIESC Journal, 2025, 76(11): 6058-6065.
栾俊, 宋磊, 葛明明, 尚志杰, 李小明, 李刚, 李新泽, 杜文静. 配备电锅炉和蓄热装置的热电联产系统性能分析[J]. 化工学报, 2025, 76(11): 6058-6065.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 330 MW机组 | 350 MW机组 |
|---|---|---|
| 设计功率/MW | 330 | 350 |
| 主蒸汽流量/(t/h) | 1002.88 | 983.25 |
| 主蒸汽温度/℃ | 537 | 566 |
| 主蒸汽压力/MPa | 16.67 | 24.2 |
| 再热蒸汽温度/℃ | 537 | 566 |
| 再热蒸汽压力/ MPa | 3.2 | 4.2 |
| 供热抽气温度/℃ | 343 | 343 |
| 供热抽气压力/MPa | 0.94 | 1.0493 |
| 排气压力/MPa | 0.0054 | 0.0054 |
Table 1 Turbine core design parameters
| 参数 | 330 MW机组 | 350 MW机组 |
|---|---|---|
| 设计功率/MW | 330 | 350 |
| 主蒸汽流量/(t/h) | 1002.88 | 983.25 |
| 主蒸汽温度/℃ | 537 | 566 |
| 主蒸汽压力/MPa | 16.67 | 24.2 |
| 再热蒸汽温度/℃ | 537 | 566 |
| 再热蒸汽压力/ MPa | 3.2 | 4.2 |
| 供热抽气温度/℃ | 343 | 343 |
| 供热抽气压力/MPa | 0.94 | 1.0493 |
| 排气压力/MPa | 0.0054 | 0.0054 |
| 工况 | 热/电负荷/ MW | 参数 | 实际值 | 模拟值 | 误差/ % |
|---|---|---|---|---|---|
| 1 | 1392/815 | 汽轮机热耗率/(kJ/kWh) | 6708.15 | 6713.58 | 0.81 |
| 煤耗率/(kg/kWh) | 0.27161 | 0.27180 | 0.69 | ||
| 2 | 1280/824 | 汽轮机热耗率/(kJ/kWh) | 6359.64 | 6364.92 | 0.83 |
| 煤耗率/(kg/kWh) | 0.25977 | 0.25995 | 0.70 | ||
| 3 | 1522/1032 | 汽轮机热耗率/(kJ/kWh) | 6697.78 | 6703.34 | 0.83 |
| 煤耗率/(kg/kWh) | 0.26958 | 0.26977 | 0.71 | ||
| 4 | 1401/1061 | 汽轮机热耗率/(kJ/kWh) | 6472.76 | 6477.03 | 0.66 |
| 煤耗率/(kg/kWh) | 0.26106 | 0.26122 | 0.61 | ||
| 5 | 1273/1116 | 汽轮机热耗率/(kJ/kWh) | 6300.56 | 6303.53 | 0.47 |
| 煤耗率/(kg/kWh) | 0.25048 | 0.25063 | 0.59 |
Table 2 Model validation
| 工况 | 热/电负荷/ MW | 参数 | 实际值 | 模拟值 | 误差/ % |
|---|---|---|---|---|---|
| 1 | 1392/815 | 汽轮机热耗率/(kJ/kWh) | 6708.15 | 6713.58 | 0.81 |
| 煤耗率/(kg/kWh) | 0.27161 | 0.27180 | 0.69 | ||
| 2 | 1280/824 | 汽轮机热耗率/(kJ/kWh) | 6359.64 | 6364.92 | 0.83 |
| 煤耗率/(kg/kWh) | 0.25977 | 0.25995 | 0.70 | ||
| 3 | 1522/1032 | 汽轮机热耗率/(kJ/kWh) | 6697.78 | 6703.34 | 0.83 |
| 煤耗率/(kg/kWh) | 0.26958 | 0.26977 | 0.71 | ||
| 4 | 1401/1061 | 汽轮机热耗率/(kJ/kWh) | 6472.76 | 6477.03 | 0.66 |
| 煤耗率/(kg/kWh) | 0.26106 | 0.26122 | 0.61 | ||
| 5 | 1273/1116 | 汽轮机热耗率/(kJ/kWh) | 6300.56 | 6303.53 | 0.47 |
| 煤耗率/(kg/kWh) | 0.25048 | 0.25063 | 0.59 |
| 目标 | 熵值 | 差异系数 | 权重系数/% |
|---|---|---|---|
| 0.9128 | 0.0872 | 39.49 | |
| 0.9199 | 0.0801 | 36.26 | |
| 0.9465 | 0.0535 | 24.25 |
Table 3 Entropy weight method
| 目标 | 熵值 | 差异系数 | 权重系数/% |
|---|---|---|---|
| 0.9128 | 0.0872 | 39.49 | |
| 0.9199 | 0.0801 | 36.26 | |
| 0.9465 | 0.0535 | 24.25 |
| 发电收入/万元 | 碳排放/万吨 | 有效电量/GWh | |
|---|---|---|---|
| 优化策略 | 20326 | 270.1 | 2250.7 |
| 常规热电联产厂 | 18650 | 281.9 | 2167.6 |
Table 4 Actual benefits improvement during the heating season
| 发电收入/万元 | 碳排放/万吨 | 有效电量/GWh | |
|---|---|---|---|
| 优化策略 | 20326 | 270.1 | 2250.7 |
| 常规热电联产厂 | 18650 | 281.9 | 2167.6 |
| [1] | Chen W D, Shao Y L, Bui D T, et al. Re-establishing and Elucidating the right operation strategy foundation for combined heat and power systems[J]. Sustainable Energy Technologies and Assessments, 2025, 73: 104091. |
| [2] | Mallapaty S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483. |
| [3] | Zhao T, Zheng Y N, Li G Y. Integrated unit commitment and economic dispatch of combined heat and power system considering heat-power decoupling retrofit of CHP unit[J]. International Journal of Electrical Power & Energy Systems, 2022, 143: 108498. |
| [4] | 张东, 李金平, 张涵. 基于沼气的热电气联供系统全工况模型与性能分析[J]. 化工学报, 2017, 68(5): 1998-2008. |
| Zhang D, Li J P, Zhang H. All operation mathematical model and thermal performance analysis on combined heating power and biogas system[J]. CIESC Journal, 2017, 68(5): 1998-2008. | |
| [5] | 杨干, 翟晓强, 郑春元, 等. 国内冷热电联供系统现状和发展趋势[J]. 化工学报, 2015, 66(S2): 1-9. |
| Yang G, Zhai X Q, Zheng C Y, et al. Present situation and development trend of combined cooling, heating and power system in China[J]. CIESC Journal, 2015, 66(S2): 1-9. | |
| [6] | 徐翔, 王远超, 张博. 基于喷射式热泵的热电联产供热系统[J]. 化工学报, 2014, 65(3): 1025-1032. |
| Xu X, Wang Y C, Zhang B. Cogeneration heating system based on ejector heat pumps[J]. CIESC Journal, 2014, 65(3): 1025-1032. | |
| [7] | Xin Y L, Zhao T, Chen X, et al. Heat current method-based real-time coordination of power and heat generation of multi-CHP units with flexibility retrofits[J]. Energy, 2022, 252: 124018. |
| [8] | Chen C X, Du X Z, Yang L Z, et al. Flexibility enhancement of combined heat and power unit integrated with source and grid-side thermal energy storage[J]. Energy, 2024, 312: 133568. |
| [9] | Zhu K Y, Zhang G M, Zhu C, et al. A bi-level optimization strategy for flexible and economic operation of the CHP units based on reinforcement learning and multi-objective MPC[J]. Applied Energy, 2025, 391: 125850. |
| [10] | Ma Y, Li Y P, Huang G H. Planning China's non-deterministic energy system (2021—2060) to achieve carbon neutrality[J]. Applied Energy, 2023, 334: 120673. |
| [11] | Wang C Y, Song J W. Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations[J]. Energy, 2023, 263: 125886. |
| [12] | Zhao Y L, Wang C Y, Liu M, et al. Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: a dynamic simulation[J]. Applied Energy, 2018, 212: 1295-1309. |
| [13] | Wang C Y, Zhao Y L, Liu M, et al. Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio[J]. Applied Energy, 2018, 216: 212-223. |
| [14] | Stevanovic V D, Ilic M, Djurovic Z, et al. Primary control reserve of electric power by feedwater flow rate change through an additional economizer-A case study of the thermal power plant “Nikola Tesla B”[J]. Energy, 2018, 147: 782-798. |
| [15] | Liu Z Z, Zheng Z H, Song J W, et al. Primary frequency regulation capacity enhancement of CHP units: control strategy combining high pressure valve adjustment and heating extraction steam adjustment[J]. Case Studies in Thermal Engineering, 2022, 35: 102097. |
| [16] | Liu M, Ma G F, Wang S, et al. Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111715. |
| [17] | Tian X, Deng S, Kang L G, et al. Study on heat and power decoupling for CCHP system: methodology and case study[J]. Applied Thermal Engineering, 2018, 142: 597-609. |
| [18] | Hou G L, Fan Y Z, Wang J J. Intelligent fuzzy neural network modeling for flexible operation of combined heat and power plant with heat-power decoupling technology[J]. Energy, 2024, 309: 133099. |
| [19] | 潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景[J]. 电力建设, 2020, 41(9): 58-68. |
| Pan E S, Tian X Q, Xu T, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China[J]. Electric Power Construction, 2020, 41(9): 58-68. | |
| [20] | Mostafavi Tehrani S S, Saffar-Avval M, Behboodi Kalhori S, et al. Hourly energy analysis and feasibility study of employing a thermocline TES system for an integrated CHP and DH network[J]. Energy Conversion and Management, 2013, 68: 281-292. |
| [21] | Wang J W, You S, Zong Y, et al. Investigation of real-time flexibility of combined heat and power plants in district heating applications[J]. Applied Energy, 2019, 237: 196-209. |
| [22] | 薛朝囡, 杨荣祖, 王汀, 等. 汽轮机高低旁路联合供热在超临界350 MW机组上的应用[J]. 热力发电, 2018, 47(5): 101-105. |
| Xue Z N, Yang R Z, Wang T, et al. Application of turbine HP-LP bypass system combining with heating in supercritical 350 MW unit[J]. Thermal Power Generation, 2018, 47(5): 101-105. | |
| [23] | Jin T. Estimating the potential of power-to-heat (P2H) in 2050 energy system for the net-zero of South Korea[J]. Energy, 2025, 314: 134206. |
| [24] | Chen X Y, Kang C Q, O'Malley M, et al. Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications[J]. IEEE Transactions on Power Systems, 2015, 30(4): 1848-1857. |
| [25] | Wojcik J, Wang J H. Technical feasibility study of thermal energy storage integration into the conventional power plant cycle[J]. Energies, 2017, 10(2): 205. |
| [26] | Lai F, Wang S, Liu M, et al. Operation optimization on the large-scale CHP station composed of multiple CHP units and a thermocline heat storage tank[J]. Energy Conversion and Management, 2020, 211: 112767. |
| [27] | Liu M, Wang S, Zhao Y L, et al. Heat-power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance[J]. Energy, 2019, 188: 116074. |
| [28] | Nielsen M G, Morales J M, Zugno M, et al. Economic valuation of heat pumps and electric boilers in the Danish energy system[J]. Applied Energy, 2016, 167: 189-200. |
| [29] | Cho H, Sarwar R, Mago P J, et al. Design and feasibility study of combined heat and power systems integrated with heat pump[J]. Applied Thermal Engineering, 2016, 93: 155-165. |
| [30] | Blarke M B. Towards an intermittency-friendly energy system: comparing electric boilers and heat pumps in distributed cogeneration[J]. Applied Energy, 2012, 91(1): 349-365. |
| [31] | Münster M, Morthorst P E, Larsen H V, et al. The role of district heating in the future Danish energy system[J]. Energy, 2012, 48(1): 47-55. |
| [32] | Yu J, Guo L, Ma M N, et al. Risk assessment of integrated electrical, natural gas and district heating systems considering solar thermal CHP plants and electric boilers[J]. International Journal of Electrical Power & Energy Systems, 2018, 103: 277-287. |
| [33] | Sinha R, Bak-Jensen B, Radhakrishna Pillai J, et al. Flexibility from electric boiler and thermal storage for multi energy system interaction[J]. Energies, 2020, 13(1): 98. |
| [34] | Zhang L D, Ma C, Wang L, et al. Theoretical analysis and economic evaluation of wind power consumption by electric boiler and heat storage tank for distributed heat supply system[J]. Electric Power Systems Research, 2024, 228: 110060. |
| [35] | Liang G Z, Zhang X M, Ding C L, et al. Energy flow tracking of integrated energy system with electric thermal storage boiler[J]. Journal of Physics: Conference Series, 2024, 2838(1): 012029. |
| [36] | Lu S L, Wei H S, Jia Y B, et al. A control method of electric boiler phase change thermal storage heating system based on dual-time scale load prediction model[J]. Journal of Energy Storage, 2025, 107: 114959. |
| [37] | Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
| [1] | Chengyun WU, Haoran SUN. Performance simulation and fuel penalty investigation of civil aircraft air conditioning systems [J]. CIESC Journal, 2025, 76(S1): 351-359. |
| [2] | Senqing ZHUO, Hua CHEN, Wei CHEN, Bin SHANG, Hengheng LIU, Tangtang GU, Wei BAI, Longyan WANG, Haomin CAO, Guoliang DING. Model development and software implementation for predicting APF of multi-split air conditioning system [J]. CIESC Journal, 2025, 76(S1): 370-376. |
| [3] | Wenfeng ZHANG, Wei GUO, Xinyu ZHANG, Haomin CAO, Guoliang DING. Model development and software implementation of the aluminum tube and aluminum fin heat exchanger [J]. CIESC Journal, 2025, 76(S1): 84-92. |
| [4] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [5] | Peng TIAN, Zhonglin ZHANG, Chao REN, Guochao MENG, Xiaogang HAO, Yegang LIU, Qiwang HOU, Abuliti ABUDULA, Guoqing GUAN. Modeling and optimization of rectisol process based on self-heat regeneration [J]. CIESC Journal, 2025, 76(9): 4601-4612. |
| [6] | Yaqing HE, Weiqing WANG, Yingtian CHI, Jiarong LI, Haiyun WANG, Xinyan ZHANG, Bowen LIU. Optimization analysis of 3D modelling of SOEC stacks taking into account inhomogeneities [J]. CIESC Journal, 2025, 76(8): 4129-4144. |
| [7] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [8] | Xiaotong XIANG, Xudong DUAN, Simin WANG. Research on performance of PEM electrolyzer driven by multi-objective optimization [J]. CIESC Journal, 2025, 76(6): 2626-2637. |
| [9] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
| [10] | Zhu FANG, Yaqin LIAO, Qian ZHANG, Yiyang ZHANG, Shuiqing LI. Study on adhesion loose packing limit of adhesive ellipsoids based on random ballistic deposition method [J]. CIESC Journal, 2025, 76(11): 5533-5543. |
| [11] | Haidong LI, Qiqi ZHANG, Lu YANG, Naeem AKRAM, Chenglin CHANG, Wenlong MO, Weifeng SHEN. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms [J]. CIESC Journal, 2025, 76(1): 241-255. |
| [12] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
| [13] | Jiapeng YU, Na XU, Wei ZHANG, Qingyuan KANG, Hong ZHANG, Muxuan QIN, Jiabin FANG. Modeling and multi-objective optimization of yield and energy consumption of gas-liquid sulfonation reaction in microreactor [J]. CIESC Journal, 2024, 75(10): 3681-3690. |
| [14] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
| [15] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||