CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1295-1301.doi: 10.11949/0438-1157.20200731

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Analysis on thermal conduction characteristics of metal foam based on conduction form factor

YANG Zhen(),YAO Yuanpeng,WU Huiying()   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-06-09 Revised:2020-08-11 Online:2021-03-05 Published:2021-03-05
  • Contact: WU Huiying E-mail:shjt-yz@sjtu.edn.cn;whysrj@sjtu.edu.cn

Abstract:

The conduction form factor (m), which is used to calculate the equivalent thermal conductivity of foam metal, is introduced through theoretical analysis, and m is calculated and analyzed based on a large number of experimental data reported in the literature. It is shown that m fluctuates with materials, porosities as well as pore densities of metal foams randomly and erratically. In other words, the directional deformation effect of porous foam structure should be taken into account sufficiently to accurately predict the effective thermal conductivity. Accordingly, by direct numerical simulation, a dimensionless criterion correlation characterizing the variation of m with directional deformation parameters which are defined as the ratio of cell diameter between the macro heat transfer direction of metal foam and its orthogonal direction was obtained. A new method for predicting directional effective thermal conductivity was further proposed by employing the conduction form factor, which was verified through literature reported experimental data. It is found that the effective thermal conductivity can be accurately calculated by the prediction method proposed in present study, with a small prediction deviation of 0.77%. Compared with previous theoretical prediction models derived on a basis of isotropic porous structure assumption whose prediction deviations from experimental data are more than 14%, our method can significantly improve the prediction accuracy of effective thermal conductivity.

Key words: porous media, metal foam, heat conduction, effective thermal conductivity, prediction, conduction form factor

CLC Number: 

  • TK
1 盛强, 邢玉明, 王泽. 泡沫金属复合相变材料的制备与性能分析[J]. 化工学报, 2013, 64 (10): 3565-3570.
Sheng Q, Xing Y M, Wang Z. Preparation and performance analysis of metal foam composite phase change material[J]. CIESC Journal, 2013, 64(10): 3565-3570.
2 Li W Q, Wan H, Jing T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: a numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421.
3 Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams[J]. Journal of Heat Transfer, 1999, 121(2): 466-471.
4 Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031.
5 Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 827-836.
6 Dai Z, Nawaz K, Park Y G, et al. Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams[J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 575-580.
7 Yang H, Zhao M, Gu Z L, et al. A further discussion on the effective thermal conductivity of metal foam: an improved model[J]. International Journal of Heat and Mass Transfer, 2015, 86: 207-211.
8 Gong L, Kyriakides S, Jang W Y. Compressive response of open-cell foams (Ⅰ): Morphology and elastic properties[J]. International Journal of Solids & Structures, 2005, 42(5/6): 1355-1379.
9 Perrot C, Panneton R, Olny X. Periodic unit cell reconstruction of porous media: application to open-cell aluminum foams[J]. Journal of Applied Physics, 2007, 101(11): 113538.
10 Jang W Y, Kraynik A M, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties[J]. International Journal of Solids and Structures, 2008, 45(7/8): 1845-1875.
11 Manonukul A, Srikudvien P, Tange M, et al. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method[J]. Materials Science and Engineering: A, 2016, 655: 388-395.
12 Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1999: 175-231.
13 Bodla K K, Murthy J Y, Garimella S V. Microtomography-based simulation of transport through open-cell metal foams[J]. Numerical Heat Transfer, Part A: Applications, 2010, 58(7): 527-544.
14 Kumar P, Topin F. Impact of anisotropy on geometrical and thermal conductivity of metallic foam structures[J]. Journal of Porous Media, 2015, 18(10): 949-970.
15 Zafari M, Panjepour M, Davazdah E M, et al. Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams[J]. Applied Thermal Engineering, 2015, 80: 347-354.
16 Iasiello M, Bianco N, Chiu W K S, et al. Thermal conduction in open-cell metal foams: anisotropy and representative volume element[J]. International Journal of Thermal Sciences, 2019, 137: 399-409.
17 Wang W B, Yang X H, Han B, et al. Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2): 69-75.
18 Yao Y P, Wu H Y, Liu Z Y. Pore scale investigation of heat conduction of high porosity open-cell metal foam/paraffin composite[J]. Journal of Heat Transfer, 2017, 139(9): 091302.1-091302.11.
19 Yao Y P, Wu H Y, Liu Z Y. A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams[J]. International Journal of Thermal Sciences, 2015, 97: 56-67.
20 Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105.
21 Schmierer E N, Razani A. Self-consistent open-celled metal foam model for thermal applications[J]. Journal of Heat Transfer, 2006, 128(11): 1194-1203.
22 Yang X H, Bai J X, Yan H B, et al. An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams[J]. Transport in Porous Media, 2014, 102(3): 403-426.
23 张涛, 余建祖, 高红霞. TPS法测定泡沫铜/石蜡复合相变材料热物性[J]. 太阳能学报, 2010, 31(5): 604-609.
Zhang T, Yu J Z, Gao H X. Measurement of thermal parameters of copper-foam/paraffins composite PCM using transient plane source (TPS) method[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 604-609.
24 Sadeghi E, Hsieh S, Bahrami M. Thermal conductivity and contact resistance of metal foams[J]. Journal of Physics D: Applied Physics, 2011, 44(12): 125406.
25 Paek J W, Kang B H, Kim S Y, et al. Effective thermal conductivity and permeability of aluminum foam materials[J]. International Journal of Thermophysics, 2000, 21(2): 453-464.
26 Fetoui M, Albouchi F, Rigollet F, et al. Highly porous metal foams: effective thermal conductivity measurement using a photothermal technique[J]. Journal of Porous Media, 2009, 12(10): 939-954.
27 Takegoshi E, Hirasawa Y, Matsuo J, et al. A study on effective thermal conductivity of porous metals[J]. Transactions of the Japan Society of Mechanical Engineers, Series B, 1992, 58(547): 879-884.
28 Coquard R, Rochais D, Baillis D. Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams[J]. International Journal of Heat & Mass Transfer, 2009, 52(21/22): 4907-4918.
29 Krishnan S, Murthy J Y, Garimella S V. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer, 2006, 128(8): 793-799.
30 姚元鹏, 刘振宇, 吴慧英. 一种计算泡沫金属等效热导率的新模型[J]. 化工学报, 2014, 65(8): 2921-2926.
Yao Y P, Liu Z Y, Wu H Y. A new model for calculating effective thermal conductivity of metal foam[J]. CIESC Journal, 2014, 65(8): 2921-2926.
[1] LIN Shiquan, ZHAO Yaxin, LYU Zhongyuan, LAI Zhancheng, HU Haitao. Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam [J]. CIESC Journal, 2021, 72(S1): 295-301.
[2] HE Qifan, WU Minqiang, LI Tingxian, WANG Ruzhu. Preparation and thermophysical properties of octadecane/ OBC/ EG composite shaped phase change material [J]. CIESC Journal, 2021, 72(S1): 539-545.
[3] LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites [J]. CIESC Journal, 2021, 72(S1): 7-20.
[4] Hao ZHANG, Jiao WANG, Ting MA, Xinyi LI, Jun LIU, Qiuwang WANG. Experimental investigation on phase change heat transfer of paraffin composited with porous graphite under supergravity [J]. CIESC Journal, 2021, 72(9): 4523-4530.
[5] Jianguo YAN, Shumin ZHENG, Pengcheng GUO, Bo ZHANG, Zhenkai MAO. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network [J]. CIESC Journal, 2021, 72(9): 4649-4657.
[6] Tingjiang LIU, Jingxian WANG, Yang YU, Yiming ZHAO, Dapeng HU. Research of wall pulsating heat transfer on performance of gas wave refrigeration [J]. CIESC Journal, 2021, 72(8): 4073-4080.
[7] Haifeng LU, Jiakun CAO, Xiaolei GUO, Haifeng LIU. Study on fine powders discharged from hopper based on interparticle interactions analysis [J]. CIESC Journal, 2021, 72(8): 4047-4054.
[8] Qi LI, Rongming ZHANG, Pengfei HU. Influence of interfacial convective heat transfer coefficient on heat transfer in partially filled porous channel under LTNE condition [J]. CIESC Journal, 2021, 72(8): 4121-4133.
[9] CHEN Hao, LIU Xiliang, TAN Xianhong, TIAN Xiaofeng, YANG Shenglai, YANG Ran, ZHANG Chao. Study on the effect of surface area on the thermal behavior of crude oils with different properties [J]. CIESC Journal, 2021, 72(6): 3338-3348.
[10] TIAN Yaling, ZHANG Hainan, XU Hongbo, TIAN Changqing. Experimental study on compact plate loop heat pipe [J]. CIESC Journal, 2021, 72(6): 3288-3295.
[11] PAN Feng, WANG Chaojie, MU Lizhong, HE Ying. Analysis of the influence of microlayer evaporation on single-bubble pool boiling by coupling the experimental observations and numerical simulations [J]. CIESC Journal, 2021, 72(5): 2514-2527.
[12] LIU Zhen, DU Huadong, HU Xu, JI Zhongli. Experimental investigation of influence of high-pressure condition on filtration performance of natural gas filter cartridge [J]. CIESC Journal, 2021, 72(5): 2669-2679.
[13] CHU Fei, PENG Chuang, JIA Runda, CHEN Tao, LU Ningyun. Online prediction method of batch process product quality based on multi-scale kernel JYMKPLS transfer model [J]. CIESC Journal, 2021, 72(4): 2178-2189.
[14] UTAKA Yoshio, XU Jingying, WANG Guozhuo, CHEN Zhihao. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells [J]. CIESC Journal, 2021, 72(4): 2276-2282.
[15] YUAN Xudong,JIA Lei,ZHOU Dao,ZHAO Panpan,WU Junfeng,WANG Rujin. Research progress on basic theory and improvement technology for critical heat flux of microchannel [J]. CIESC Journal, 2021, 72(4): 1796-1814.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIA Chunming, ZHENG Jianrong, J.Howell. Isolation of whole-plant multiple oscillations via non-negative spectral decomposition[J]. , 2007, 15(3): 353 -360 .
[2] JI Yuanhui, JI Xiaoyan, FENG Xin, LIU Chang, LÜ, Linghong, LU Xiaohua. Progress in the study on the phase equilibria of the CO2-H2O and CO2-H2O-NaCl systems[J]. , 2007, 15(3): 439 -448 .
[3] ZHANG Xiuli, ZHANG Weidong, HAO Xinmin, ZHANG Huifeng, ZHANG Zeting, ZHANG Jianchun. Mathematical Model of Gas Permeation Through PTFE Porous Membrane and the Effect of
Membrane Pore Structure
[J]. , 2003, 11(4): 383 -387 .
[4] XU Songlin, WANG Junwu, XU Shimin, WANG Shuhua. Purification of Octacosanol by Agitated Short-Path Distillation[J]. , 2003, 11(4): 480 -482 .
[5] ZHANG Peng, LIU Chunjiang, WANG Lidong, TANG Zhongli, YU Guocong. Performance of Structured Packing in High Pressure Distillation[J]. , 2002, 10(6): 635 -638 .
[6] WU Jialong, PAN Qinmin, G. L. Rempel. Prediction of Phase Behavior for Styrene/CO2/Polystyrene Mixtures[J]. , 2002, 10(6): 706 -710 .
[7] GAO Ying SHI Lei YAO Pingjing. Waste Minimization Through Process Integration and Multi-objective Optimization[J]. , 2001, 9(3): 267 -272 .
[8] CHEN Aifan, CHEN Liangyuan, CUI Meisheng, LUO Ruixian, Chungchiun LIU. SPE Membrane Electrode and Its Application to Chemical Sensor[J]. , 2001, 9(2): 186 -189 .
[9] WANG Zhaolin, CHEN Wei, YANG Yongrong, RONG Shunxi. Adsorption Equilibrium of Volatile in Condensed ModePolyethylene Process[J]. , 2000, 8(1): 41 -45 .
[10] LUO Yiqing, YUAN Xigang, YANG Zujie, LIU Chunjiang. A Novel Operation Policy for Dilute Component Separation Quasi-batch Distillation[J]. , 2005, 13(3): 338 -342 .