1 |
盛强, 邢玉明, 王泽. 泡沫金属复合相变材料的制备与性能分析[J]. 化工学报, 2013, 64 (10): 3565-3570.
|
|
Sheng Q, Xing Y M, Wang Z. Preparation and performance analysis of metal foam composite phase change material[J]. CIESC Journal, 2013, 64(10): 3565-3570.
|
2 |
Li W Q, Wan H, Jing T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: a numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421.
|
3 |
Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams[J]. Journal of Heat Transfer, 1999, 121(2): 466-471.
|
4 |
Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031.
|
5 |
Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 827-836.
|
6 |
Dai Z, Nawaz K, Park Y G, et al. Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams[J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 575-580.
|
7 |
Yang H, Zhao M, Gu Z L, et al. A further discussion on the effective thermal conductivity of metal foam: an improved model[J]. International Journal of Heat and Mass Transfer, 2015, 86: 207-211.
|
8 |
Gong L, Kyriakides S, Jang W Y. Compressive response of open-cell foams (Ⅰ): Morphology and elastic properties[J]. International Journal of Solids & Structures, 2005, 42(5/6): 1355-1379.
|
9 |
Perrot C, Panneton R, Olny X. Periodic unit cell reconstruction of porous media: application to open-cell aluminum foams[J]. Journal of Applied Physics, 2007, 101(11): 113538.
|
10 |
Jang W Y, Kraynik A M, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties[J]. International Journal of Solids and Structures, 2008, 45(7/8): 1845-1875.
|
11 |
Manonukul A, Srikudvien P, Tange M, et al. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method[J]. Materials Science and Engineering: A, 2016, 655: 388-395.
|
12 |
Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1999: 175-231.
|
13 |
Bodla K K, Murthy J Y, Garimella S V. Microtomography-based simulation of transport through open-cell metal foams[J]. Numerical Heat Transfer, Part A: Applications, 2010, 58(7): 527-544.
|
14 |
Kumar P, Topin F. Impact of anisotropy on geometrical and thermal conductivity of metallic foam structures[J]. Journal of Porous Media, 2015, 18(10): 949-970.
|
15 |
Zafari M, Panjepour M, Davazdah E M, et al. Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams[J]. Applied Thermal Engineering, 2015, 80: 347-354.
|
16 |
Iasiello M, Bianco N, Chiu W K S, et al. Thermal conduction in open-cell metal foams: anisotropy and representative volume element[J]. International Journal of Thermal Sciences, 2019, 137: 399-409.
|
17 |
Wang W B, Yang X H, Han B, et al. Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2): 69-75.
|
18 |
Yao Y P, Wu H Y, Liu Z Y. Pore scale investigation of heat conduction of high porosity open-cell metal foam/paraffin composite[J]. Journal of Heat Transfer, 2017, 139(9): 091302.1-091302.11.
|
19 |
Yao Y P, Wu H Y, Liu Z Y. A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams[J]. International Journal of Thermal Sciences, 2015, 97: 56-67.
|
20 |
Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105.
|
21 |
Schmierer E N, Razani A. Self-consistent open-celled metal foam model for thermal applications[J]. Journal of Heat Transfer, 2006, 128(11): 1194-1203.
|
22 |
Yang X H, Bai J X, Yan H B, et al. An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams[J]. Transport in Porous Media, 2014, 102(3): 403-426.
|
23 |
张涛, 余建祖, 高红霞. TPS法测定泡沫铜/石蜡复合相变材料热物性[J]. 太阳能学报, 2010, 31(5): 604-609.
|
|
Zhang T, Yu J Z, Gao H X. Measurement of thermal parameters of copper-foam/paraffins composite PCM using transient plane source (TPS) method[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 604-609.
|
24 |
Sadeghi E, Hsieh S, Bahrami M. Thermal conductivity and contact resistance of metal foams[J]. Journal of Physics D: Applied Physics, 2011, 44(12): 125406.
|
25 |
Paek J W, Kang B H, Kim S Y, et al. Effective thermal conductivity and permeability of aluminum foam materials[J]. International Journal of Thermophysics, 2000, 21(2): 453-464.
|
26 |
Fetoui M, Albouchi F, Rigollet F, et al. Highly porous metal foams: effective thermal conductivity measurement using a photothermal technique[J]. Journal of Porous Media, 2009, 12(10): 939-954.
|
27 |
Takegoshi E, Hirasawa Y, Matsuo J, et al. A study on effective thermal conductivity of porous metals[J]. Transactions of the Japan Society of Mechanical Engineers, Series B, 1992, 58(547): 879-884.
|
28 |
Coquard R, Rochais D, Baillis D. Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams[J]. International Journal of Heat & Mass Transfer, 2009, 52(21/22): 4907-4918.
|
29 |
Krishnan S, Murthy J Y, Garimella S V. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer, 2006, 128(8): 793-799.
|
30 |
姚元鹏, 刘振宇, 吴慧英. 一种计算泡沫金属等效热导率的新模型[J]. 化工学报, 2014, 65(8): 2921-2926.
|
|
Yao Y P, Liu Z Y, Wu H Y. A new model for calculating effective thermal conductivity of metal foam[J]. CIESC Journal, 2014, 65(8): 2921-2926.
|