CIESC Journal

Previous Articles     Next Articles

Visualized experiment of melting of paraffin wax in aluminum foam with open cells

GAO Dongyan1, CHEN Zhenqian2, CHEN Linghai1   

  1. 1. School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, Jiangsu, China;
    2. School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2014-01-21 Revised:2014-01-28 Online:2014-05-30 Published:2014-05-30
  • Supported by:
    supported by the National Natural Science Foundation of China (51206076) and the Qing Lan Projects of Jiangsu Province (2012).

Abstract: The visualized experiments of melting of paraffin wax in open-cell aluminum foam are performed using the microscopical technique and the infrared camera. The phase change process of paraffin wax and fluid flow are revealed in aluminum foam at the pore level, and the thermal performance of the paraffin-aluminum foam composite is visually investigated. The experimental results indicate that the aluminum foam can helpfully enhance phase change heat transfer of paraffin wax, and the wax-aluminum foam composite mainly dominated by the conduction of metal matrix has better thermal performance than the pure wax with clearly melting interface. In addition, several fragments of suspended matters are observed to be existed in the liquid wax.

Key words: metal foam, phase change materials, melting, visualized experiment

CLC Number: 

  • TK124
[1] Zalba B, Marin J M, Cabeza L F, Mehling H. Reviews on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23: 251-283
[2] Garimella S V. Advance in mesoscale thermal management technologies for microelectronics [J]. Microelectronics Journal, 2006, 37: 1165-1185
[3] Kenisarin M, Mahkamov K. Solar energy storage using phase change materials [J]. Renewable and Sustainable Energy Reviews, 2007, 11:1913-1965
[4] Eftekhar J, Sheikh A H, Lou D Y S. Heat transfer enhancement in a paraffin wax thermal storage system [J]. Solar Energy, 1984, 106: 299-306
[5] Zhao C Y. Review on thermal transport in high porosity cellular metal foams with open cells [J]. International Journal of Heat and Mass Transfer, 2012, 55: 3618-3632
[6] Nield D A, Bejan A. Convection in Porous Media [M]. New York: Springer-Verlag Press, 2013: 469-522
[7] Gao Dongyan (杲东彦), Chen Zhenqian (陈振乾). Lattice Boltzmann method for heat transfer of melting in porous media with high Darcy number [J]. CIESC Journal (化工学报), 2011, 62(2): 321-328
[8] Krishnan S, Murthy J Y, Garimella S V. A two-temperature model for solid-liquid phase change in metal foams [J]. Journal of Heat Transfer, 2005, 127: 995-1004
[9] Mesalhy O, Lafdi K, Elgafy A, Bowman K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix [J]. Energy Conversion and Management, 2005, 46 (6): 846-867
[10] Gao D Y, Chen Z Q, Shi M H, Wu Z S. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method [J]. Science China Technological Sciences, 2010, 53: 3079-3087
[11] Wu Bin (吴斌), Xing Yuming (邢玉明), Xu Weiqiang (徐伟强). Numerical investigation of electronic thermal control unit with foam composite phase change material [J]. CIESC Journal (化工学报), 2010, 61(10): 2540-2545
[12] Gao D, Chen Z. Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media [J]. International Journal of Thermal Sciences, 2011, 50: 493-501
[13] Gao D, Chen Z, Chen L. A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions [J]. International Journal of Heat and Mass Transfer, 2014, 70: 979-989
[14] Hong S T, Herling D R. Open-cell aluminum foams filled with phase change materials as compact heat sinks [J]. Scripta Materialia, 2006, 55: 887-890
[15] Lafdi K, Mesalhy O, Shikh S. Experimental study on the influence of foam porosity and pore size on the melting of phase change materials [J]. Journal of Applied Physics, 2007, 102: 491-496
[16] Siahpush A, OBrien J, Crepeau J. Phase change heat transfer enhancement using copper porous foam [J]. Journal of Heat Transfer, 2008, 130: 1-11
[17] Zhao C Y, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) [J]. Solar Energy, 2010, 84(8): 1402-1412
[18] Zhao C Y, Wu Z G. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite [J]. Solar Energy Materials & Solar Cells, 2011, 95: 635-643
[19] Wang Jieli (王杰利), Qu Zhiguo (屈治国), Li Wenqiang (李文强), Tao Wenquan (陶文铨), Lu Tianjian (卢天健). Experimental study of hybrid heat sink sintered with phase change material [J]. Journal of Engineering Thermophysics (工程热物理学报), 2011, 32(2): 295-298
[20] Sheng Qiang (盛强), Xing Yuming (邢玉明), Wang Ze (王泽). Preparation and performance analysis of metal foam composite phase change material [J]. CIESC Journal (化工学报), 2013, 64(10): 3565-3570
[21] Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material [J]. Applied Energy, 2013, 112: 1357-1366
[1] LIN Shiquan, ZHAO Yaxin, LYU Zhongyuan, LAI Zhancheng, HU Haitao. Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam [J]. CIESC Journal, 2021, 72(S1): 295-301.
[2] Ken LIN, Xiaoyong XU, Qiang LI, Dinghua HU. Study on thermal conductivity of paraffin-expanded graphite composite phase change materials [J]. CIESC Journal, 2021, 72(8): 4425-4432.
[3] XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids [J]. CIESC Journal, 2021, 72(5): 2857-2868.
[4] YANG Zhen, YAO Yuanpeng, WU Huiying. Analysis on thermal conduction characteristics of metal foam based on conduction form factor [J]. CIESC Journal, 2021, 72(3): 1295-1301.
[5] Sheng CHEN, Dunxi YU, Jianqun WU, Yimin XIA, Yueming WANG, Minghou XU. Effects of Xinjiang high calcium coal co-firing on melting characteristics of Ca-bearing minerals in ash [J]. CIESC Journal, 2020, 71(9): 4260-4269.
[6] Zhenghao LIU, Xiaosong ZHANG, Changling WANG, Muxing ZHANG. Experimental study on melting performance of paraffin and paraffin/expanded graphite [J]. CIESC Journal, 2020, 71(7): 3362-3371.
[7] Min WANG, Qianqian SHAO, Xiaofan YANG, Jingfa LI. Study on influence of inclination of coils on melting process of waxy crude oil in a floating roof tank [J]. CIESC Journal, 2020, 71(5): 2035-2048.
[8] Yang XU, Zhangjing ZHENG, Mingjia LI. Performance prediction of shell-and-tube latent heat thermal energy storage unit [J]. CIESC Journal, 2019, 70(S2): 237-243.
[9] Shaofei WU, Ting YAN, Zihan KUAI, Weiguo PAN. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials [J]. CIESC Journal, 2019, 70(9): 3553-3564.
[10] Zeshi GAO, Yuanpeng YAO, Huiying WU. Experiment on the unconstrained melting of paraffin in spherical containers [J]. CIESC Journal, 2019, 70(7): 2480-2487.
[11] Hongwei LI, Guobao WEI, Yacheng WANG, Dongwei FU. Investigation on effect of hydrophilicity and hydrophobicity of metal foam on phase separation characteristics of gas-liquid two-phase flow in T-junction [J]. CIESC Journal, 2019, 70(11): 4216-4230.
[12] SANG Lixia, LI Feng. Study on preparation and thermal properties of carbonates composite heat storage materials [J]. CIESC Journal, 2018, 69(S1): 129-135.
[13] ZHANG Liang, SHI Zhongke. Experimental exploration of passive energy storage device with phase change materials for vehicle [J]. CIESC Journal, 2018, 69(S1): 176-181.
[14] CUI Yanqi. Research on development of composite phase change humidity-control material in buildings [J]. CIESC Journal, 2018, 69(S1): 1-7.
[15] YAO Yingying, GUO Li, HU Zhongqiu, QUAN Qu, DU Dongyun. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method [J]. CIESC Journal, 2018, 69(9): 3983-3992.
Full text



[1] SITU Yue, HU Jianfeng, HUANG Hong, FU Heqing, ZENG Hanwei, CHEN Huanqin. Synthesis, properties and application of a novel epoxidized soybean oil-toughened phenolic
[J]. , 2007, 15(3): 418 -423 .
[2] ZHOU Cairong, SHI Xiaohua, WANG Haifeng, GAO Yuguo, JIANG Denggao. Solid-liquid equilibria of trans-1,2-cyclohexanediol+butyl acetate+water ternary system[J]. , 2007, 15(3): 449 -452 .
[3] LÜ, Yubin, WEI Feng, SHEN Bo, REN Qilong, WU Pingdong. Modeling, Simulation of a Simulated Moving Bed for Separation of Phosphatidylcholine from Soybean Phospholipids[J]. , 2006, 14(2): 171 -177 .
[4] LUO Zhenghong, CAO Zhikai, SU Yaotang. Monte Carlo Simulation of Propylene Polymerization (Ⅰ) Effects of Impurity on Propylene Polymerization[J]. , 2006, 14(2): 194 -199 .
[5] ZHOU Yunlong, CHEN Fei, SUN Bin. Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine[J]. , 2008, 16(6): 932 -840 .
[6] A.C. Kumoro, Masitah Hasan. Supercritical carbon dioxide extraction of andrographolide from Andrographis paniculata: Effect of the solvent flow rate, pressure and temperature[J]. , 2007, 15(6): 877 -883 .
[7] SUN Aijun, NIE Yi, LI Chunxi, WANG Zihao. Preparation of Butyl Chloride from Butanol and Hydrochloric Acid Using Ionic Liquids as Catalyst[J]. , 2008, 16(1): 151 -154 .
[8] XIONG Zhihua, ZHANG Jie, DONG Jin. Optimal Iterative Learning Control for Batch Processes Based on Linear Time-varying Perturbation Model[J]. , 2008, 16(2): 235 -240 .
[9] TONG Junmao, WU Zhansheng, SUN Xifang, XU Xiaolin, LI Chun. Adsorption Kinetics of β-Carotene and Chlorophyll onto Acid-activated Bentonite in Model Oil[J]. , 2008, 16(2): 270 -276 .
[10] LÜ Guocheng, CHENG Haidong, XU Chunchun, HE Zonghu. Effect of Strain and Chloride Concentration on Pitting Susceptibility for Type 304 Austenitic Stainless Steel[J]. , 2008, 16(2): 314 -319 .