化工学报 ›› 2019, Vol. 70 ›› Issue (10): 4062-4071.DOI: 10.11949/0438-1157.20190773
收稿日期:
2019-07-08
修回日期:
2019-09-16
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
苏海佳
作者简介:
王子帅(1995—),男,硕士研究生,基金资助:
Zishuai WANG(),Yaoqiang WANG,Gang XIAO,Haijia SU()
Received:
2019-07-08
Revised:
2019-09-16
Online:
2019-10-05
Published:
2019-10-05
Contact:
Haijia SU
摘要:
通过溶胶-凝胶法、水热法和煅烧法,成功制备出具有光催化活性的Fe3O4@TiO2磁性纳米复合材料,将超顺磁性的Fe3O4与TiO2复合,实现材料的快速回收与可见光响应能力的结合。进一步将Fe3O4@TiO2磁性纳米复合材料应用于Cr(Ⅵ)的去除,实验结果表明,在可见光照射下Fe3O4@TiO2对Cr(Ⅵ)的去除能力是P25的1.96倍。并深入探究了Fe3O4@TiO2中TiO2含量、Cr(Ⅵ)溶液的pH以及空穴去除剂对Fe3O4@TiO2可见光下光催化还原Cr(Ⅵ)能力的影响,实验表明当Fe3O4@TiO2中TiO2含量为1.0 g/g,添加甲酸作为空穴去除剂并且溶液pH=2时Fe3O4@TiO2对Cr(Ⅵ)的去除能力最佳,此条件下Cr(Ⅵ)的去除率达到99.85%,重复使用4次,催化能力依然保持较高水平。此外,Fe3O4@TiO2对5~500 mg/L浓度范围内的Cr(Ⅵ)都具有良好的去除能力。Fe3O4@TiO2磁性纳米复合材料对Cr(Ⅵ)具备优异的去除能力,具有良好的应用前景。
中图分类号:
王子帅,王耀强,肖刚,苏海佳. 磁性纳米Fe3O4@TiO2可见光下光催化还原Cr(Ⅵ)[J]. 化工学报, 2019, 70(10): 4062-4071.
Zishuai WANG,Yaoqiang WANG,Gang XIAO,Haijia SU. Photocatalytic reduction of Cr(Ⅵ) by magnetic nanomaterial Fe3O4@TiO2 under visible light[J]. CIESC Journal, 2019, 70(10): 4062-4071.
Materials | Reaction time/h | Removal rate | Ref. |
---|---|---|---|
TiO2@Au@CeO2 | 5 | 79% | [ |
TiO2/PS | 2.5 | nearly 100% | [ |
AuNPs/B-TiO2/FTO glass | 5 | 80% | [ |
CQDs-TiO2- x /rGO | 1.3 | 80% | [ |
Ag@Fe3O4@SiO2@TiO2 | 4 | nearly 100% | [ |
N-TiO2/g-C3N4@diatomite | 5 | nearly 100% | [ |
C-SO3H/CN-TiO2 | 4 | nearly 100% | [ |
表1 TiO2基光催化剂去除Cr(Ⅵ)能力比较
Table 1 Comparison of ability of TiO2 based photocatalystto remove Cr(Ⅵ)
Materials | Reaction time/h | Removal rate | Ref. |
---|---|---|---|
TiO2@Au@CeO2 | 5 | 79% | [ |
TiO2/PS | 2.5 | nearly 100% | [ |
AuNPs/B-TiO2/FTO glass | 5 | 80% | [ |
CQDs-TiO2- x /rGO | 1.3 | 80% | [ |
Ag@Fe3O4@SiO2@TiO2 | 4 | nearly 100% | [ |
N-TiO2/g-C3N4@diatomite | 5 | nearly 100% | [ |
C-SO3H/CN-TiO2 | 4 | nearly 100% | [ |
图3 不同空穴去除剂对于Fe3O4@TiO2光催化还原Cr(Ⅵ)的影响及甲酸对Fe3O4@TiO2光催化还原Cr(Ⅵ)能力的提高
Fig.3 Effect of hole scavenger on reduction of Cr(Ⅵ) by Fe3O4@TiO2 and improvement of reduction of Cr(Ⅵ) by Fe3O4@TiO2
1 | Challagulla S , Nagarjuna R , Ganesan R , et al . Acrylate-based polymerizable sol-gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr(Ⅵ) photoreduction in aerobic atmosphere[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 974-982. |
2 | Xu S C , Pan S S , Xu Y , et al . Efficient removal of Cr(Ⅵ) from wastewater under sunlight by Fe(Ⅱ)-doped TiO2 spherical shell[J]. Journal of Hazardous Materials, 2015, 283: 7-13. |
3 | Chen Z , Li Y , Guo M , et al . One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(Ⅵ) and Cr(Ⅲ)[J]. Journal of Hazardous Materials, 2016, 310: 188-198. |
4 | 赵宇 . 重金属废水污染现状[J]. 江西化工, 2016, 2: 207-208. |
Zhao Y . Pollution status and hazard of heavy metal wastewater[J]. Jiangxi Chemical Industry, 2016, 2: 207-208. | |
5 | Jin Z , Zhang Y X , Meng F L , et al . Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(Ⅵ) in the presence of phenol[J]. Journal of Hazardous Materials, 2014, 276: 400-407. |
6 | Zhao X , Huang S , Liu Y , et al . In situ preparation of highly stable polyaniline/W18O49 hybrid nanocomposite as efficient visible light photocatalyst for aqueous Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2018, 353: 466-475. |
7 | Li S , Cai J , Wu X , et al . TiO2@Pt@CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr(Ⅵ) and photo-oxidation of benzyl alcohol[J]. Journal of Hazardous Materials, 2018, 346: 52-61. |
8 | Chen H , Shao Y , Xu Z , et al . Effective catalytic reduction of Cr(Ⅵ) over TiO2 nanotube supported Pd catalysts[J]. Applied Catalysis B: Environmental, 2011, 105(3/4): 255-262. |
9 | Nanda B , Pradhan A C , Parida K M . Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2017, 316: 1122-1135. |
10 | Liu J , Huang K , Xie K , et al . An ecological new approach for treating Cr(Ⅵ)-containing industrial wastewater: Photochemical reduction[J]. Water Research, 2016, 93: 187-194. |
11 | Wang Q , Shi X , Liu E , et al . Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2016, 317: 8-16. |
12 | Fujishima A , Honda K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37. |
13 | Chen C , Ma W , Zhao J . Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219. |
14 | 于娜娜, 代岳, 陈珍, 等 . TiO2光催化剂及其改性方法最新研究进展[J]. 化工中间体, 2011, 7(6): 16-20. |
Yu N N , Dai Y , Chen Z , et al . The latest review on modified methods of TiO2 photocatalysis[J]. Chemical Intermediate, 2011, 7(6): 16-20. | |
15 | Zhang G , Yong C Z , Nadagouda M , et al . Visible light-sensitized S, N and C co-doped polymorphic TiO2, for photocatalytic destruction of microcystin-LR[J]. Applied Catalysis B: Environmental, 2014, 144(1): 614-621. |
16 | Cassaignon S , Colbeau-Justin C . Titanium dioxide in photocatalysis[M]// Durupthy O. Nanomaterials: A Danger or a Promise? London: Springer, 2013: 153-188. |
17 | 张凤君, 刘卓婧, 刘兆煐, 等 . TiO2光催化剂改性研究进展[J]. 科技导报, 2013, 31(17): 66-71. |
Zhang F J , Liu Z J , Liu Z Y , et al . Review on the modification of TiO2 photocatalyst[J]. Science & Technology Review, 2013, 31(17): 66-71. | |
18 | Liu X , Hu Q , Fang Z , et al . Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal[J]. Langmuir, 2008, 25(1): 3-8. |
19 | Cai J , Wu X , Li S , et al . Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity[J]. Applied Catalysis B: Environmental, 2017, 201: 12-21. |
20 | Altin I , Sökmen M . Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants[J]. Applied Catalysis B: Environmental, 2014, 144: 694-701. |
21 | Kim W , Park J Y , Kim Y . Fabrication of branched-TiO2 microrods on the FTO glass for photocatalytic reduction of Cr (Ⅵ) under visible-light irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 73: 248-253. |
22 | Xu L , Yang L , Bai X , et al . Persulfate activation towards organic decomposition and Cr (Ⅵ) reduction achieved by a novel CQDs-TiO2- x /rGO nanocomposite[J]. Chemical Engineering Journal, 2019, 373: 238-250. |
23 | Su J , Zhang Y , Xu S , et al . Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions[J]. Nanoscale, 2014, 6(10): 5181-5192. |
24 | Sun Q , Hu X , Zheng S , et al . Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@ diatomite hybrid photocatalyst for improving reduction of Cr (Ⅵ)[J]. Environmental Pollution, 2019, 245: 53-62. |
25 | Huang Z , Li K , Yan L , et al . Fabrication of bio-based acidic nonmetals co-doped TiO2 with core/shell structure and their unique photocatalytic performance for the rapid reduction of aqueous Cr (Ⅵ) under original pH and visible-light conditions[J]. Applied Catalysis A: General, 2019, 575: 142-151. |
26 | Mishra P M , Naik G K , Nayak A , et al . Facile synthesis of nano-structured magnetite in presence of natural surfactant for enhanced photocatalytic activity for water decomposition and Cr(Ⅵ) reduction[J]. Chemical Engineering Journal, 2016, 299: 227-235. |
27 | Zhao Y , Tao C , Xiao G , et al . Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@ TiO2@ Ag nanocomposites[J]. Nanoscale, 2016, 8(9): 5313-5326. |
28 | 徐义邦, 樊孝俊, 龚娴 . 二苯碳酰二肼分光光度法测定水中六价铬方法的改进[J]. 中国给水排水, 2015(8): 106-108. |
Xu Y B , Fan J X , Gong X . Improvement of method for determination of chromium(Ⅵ) in water by 1, 5-diphenylcarbohydrazide spectrophotometry[J]. China Water&Wastewater, 2015(8): 106-108. | |
29 | Wang Y S , Shen J H , Horng J J . Chromate enhanced visible light driven TiO2 photocatalytic mechanism on Acid Orange 7 photodegradation[J]. Journal of Hazardous Materials, 2014, 274: 420-427. |
30 | 孙雪娇, 王思琦, 董佳, 等 . Ag/NH2-MIL-125(Ti)的构建及可见光还原水中Cr(Ⅵ)[J]. 应用化学, 2019, (3): 314-323. |
Sun X J , Wang S Q , Dong J , et al . Construction of Ag /NH2 -MIL-125(Ti) catalyst for photo-driven reduction of aqueous Cr(Ⅵ) pollutant[J]. Chinese Journal of Applied Chemistry, 2019, (3): 314-323. | |
31 | Das D P , Parida K , De B R . Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation[J]. Journal of Molecular Catalysis A Chemical, 2006, 245(1/2): 217-224. |
32 | 谢继阳, 王红琴, 彭程, 等 . 中空纳米材料功能化及在催化反应中的应用[J]. 化工进展, 2019, 38(8): 3730-3741. |
Xie J Y , Wang H Q , Peng C , et .al. Application of functionalization of hollow nanomaterials in catalytic reactions[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3730-3741. | |
33 | Benjwal P , Kumar M , Chamoli P , et al . Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(Ⅲ) by reduced graphene oxide (rGO)-metal oxide (TiO2/Fe3O4) based nanocomposites[J]. RSC Advances, 2015, 5: 73249-73260. |
34 | Roy S , Viswanath B , Hegde M S , et al . Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu)[J]. Journal of Physical Chemistry C, 2008, 112(15): 6002-6012. |
35 | Yamashita T , Hayes P . Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. |
36 | Zhu S R , Liu P F , Wu M K , et al . Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light[J]. Dalton Transactions, 2016, 45(43): 17521-17529. |
[1] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[2] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[3] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[4] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[5] | 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6. |
[6] | 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636. |
[7] | 党永强,李博妮,李可可,张建兰,冯香钰,张亚婷. 铁基催化剂光催化还原CO2研究进展[J]. 化工学报, 2021, 72(10): 5016-5027. |
[8] | 任静, 谭玲, 赵宇飞, 宋宇飞. 超薄二维材料光/电催化CO2还原的最新进展[J]. 化工学报, 2021, 72(1): 398-424. |
[9] | 张顾平, 王贝贝, 周舟, 陈冬赟, 路建美. 半导体材料在光催化低浓度氮氧化物的研究进展[J]. 化工学报, 2021, 72(1): 259-275. |
[10] | 贾勐, 张嘉宾, 冯亚青, 张宝. 金属-卟啉框架材料在光催化领域的应用[J]. 化工学报, 2020, 71(9): 4046-4057. |
[11] | 周柒, 丁红蕾, 郭得通, 潘卫国, 杜威. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443. |
[12] | 胡京宇, 姚戎, 潘玉航, 朱超, 宋爽, 沈意. 可光助再生二氧化钛/层状双氢氧化物去除水体中有机染料[J]. 化工学报, 2020, 71(7): 3296-3303. |
[13] | 杨金曼, 朱兴旺, 周固礼, 许晖, 李华明. MOFs诱导中空Co3O4/CdIn2S4合成及光催化CO2还原性能研究[J]. 化工学报, 2020, 71(6): 2780-2787. |
[14] | 刘帅,李学雷,李启朦,王彦娟,张健,封瑞江,胡绍争. 木棉纤维改性氮化碳光催化降解有机污染物[J]. 化工学报, 2020, 71(12): 5530-5540. |
[15] | 陈克龙, 黄建花. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢[J]. 化工学报, 2020, 71(1): 397-408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||