化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3626-3636.DOI: 10.11949/0438-1157.20210021
谢钦崟1(),黄晓连1,李元2,李玲1,葛雪惠1(),邱挺1
收稿日期:
2021-01-08
修回日期:
2021-03-27
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
葛雪惠
作者简介:
谢钦崟(1996—),男,硕士研究生,基金资助:
XIE Qinyin1(),HUANG Xiaolian1,LI Yuan2,LI Ling1,GE Xuehui1(),QIU Ting1
Received:
2021-01-08
Revised:
2021-03-27
Online:
2021-07-05
Published:
2021-07-05
Contact:
GE Xuehui
摘要:
光流体学可以将光催化反应与微流控技术结合,大幅提高光利用率和反应速率,实现对光催化水处理的高效强化,其中微反应器结构的设计与优化是研究重点之一。首先利用流体力学模拟分析优化通道级数,设计了5级树状通道平板反应器。进而,通过调控通道高度,研究不同高度的微通道对其光催化性能的影响。研究发现50 μm微反应器的降解性能及连续操作性能均优于100 μm。同时以亚甲基蓝为模拟废水对微反应器及釜式反应器的反应动力学、微反应器污染问题、连续操作性能等进行研究。研究表明,微反应器在不同流速下对亚甲基蓝均能实现连续高效降解,降解率远高于釜式反应器。当流速为55 μl/min时对5×10-5 mol/L亚甲基蓝可达到95%的降解率并保持较好的连续操作性能及重复使用性能。
中图分类号:
谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636.
XIE Qinyin, HUANG Xiaolian, LI Yuan, LI Ling, GE Xuehui, QIU Ting. Design optimization and photocatalytic performance research of TiO2 planar microreactor[J]. CIESC Journal, 2021, 72(7): 3626-3636.
1 | Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641): 431-432. |
2 | Singh R, Dutta S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts[J]. Fuel, 2018, 220: 607-620. |
3 | Nogueira M V, Lustosa G M M M, Kobayakawa Y, et al. Nb-doped TiO2 photocatalysts used to reduction of CO2 to methanol[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-8. |
4 | Zhan W W, Sun L M, Han X G. Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks[J]. Nano-Micro Letters, 2019, 11(1): 1-28. |
5 | Krysa J, Mantzavinos D, Pichat P, et al. Advanced oxidation processes for water/wastewater treatment[J]. Environmental Science and Pollution Research, 2018, 25(35): 34799-34800. |
6 | Yusuf A, Garlisi C, Palmisano G. Overview on microfluidic reactors in photocatalysis: applications of graphene derivatives[J]. Catalysis Today, 2018, 315: 79-92. |
7 | Su Y H, Straathof N J W, Hessel V, et al. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications[J]. Chemistry - A European Journal, 2014, 20(34): 10562-10589. |
8 | Liu C H, Lee G B. A micropump using amplified deformation of resilient membranes through oil hydraulics[J]. Microfluidics and Nanofluidics, 2014, 17(2): 393-400. |
9 | Suhadolnik L, Pohar A, Novak U, et al. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: batch, microreactor and scaled-up operation[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 178-188. |
10 | Yang L L, Wei J T, Ma Z, et al. The fabrication of micro/nano structures by laser machining[J]. Nanomaterials, 2019, 9(12): E1789. |
11 | Arshavsky-Graham S, Enders A, Ackerman S, et al. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection[J]. Microchimica Acta, 2021, 188(3): 1-12. |
12 | Azzouz I, Habba Y G, Capochichi-Gnambodoe M, et al. Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds[J]. Microsystems & Nanoengineering, 2018, 4: 17093. |
13 | Fernández-Catalá J, Berenguer-Murcia Á, Cazorla-Amorós D. Photocatalytic oxidation of VOCs in gas phase using capillary microreactors with commercial TiO₂ (P25) fillings[J]. Materials, 2018, 11(7): E1149. |
14 | Fernández-Catalá J, Garrigós-Pastor G, Berenguer-Murcia Á, et al. Photo-microfluidic chip reactors for propene complete oxidation with TiO2 photocalyst using UV-LED light[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103408. |
15 | Oliveira de Brito Lira J, Riella H G, Padoin N, et al. An overview of photoreactors and computational modeling for the intensification of photocatalytic processes in the gas-phase: state-of-art[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105068. |
16 | Huang X, Wang J, Li T, et al. Review on optofluidic microreactors for artificial photosynthesis[J]. Beilstein Journal of Nanotechnology, 2018, 9: 30-41. |
17 | Yu G S, Wang N. Gas-liquid-solid interface enhanced photocatalytic reaction in a microfluidic reactor for water treatment[J]. Applied Catalysis A: General, 2020, 591: 117410. |
18 | Schreck M, Niederberger M. Photocatalytic gas phase reactions[J]. Chemistry of Materials, 2019, 31(3): 597-618. |
19 | Sundar K P, Kanmani S. Progression of photocatalytic reactors and its comparison: a review[J]. Chemical Engineering Research and Design, 2020, 154: 135-150. |
20 | Younis S, Kim K H. Heterogeneous photocatalysis scalability for environmental remediation: opportunities and challenges[J]. Catalysts, 2020, 10(10): 1109. |
21 | da Costa Filho B M, Vilar V J P. Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: a review[J]. Chemical Engineering Journal, 2020, 391: 123531. |
22 | Jia H P, Wong Y L, Jian A Q, et al. Microfluidic reactors for plasmonic photocatalysis using gold nanoparticles[J]. Micromachines, 2019, 10(12): E869. |
23 | Chen R, Li L, Zhu X, et al. Highly-durable optofluidic microreactor for photocatalytic water splitting[J]. Energy, 2015, 83: 797-804. |
24 | Nakamura A, Yoshida K, Kuwahara S, et al. Photocatalytic organic syntheses using a glass-milled microchip[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 322/323: 35-40. |
25 | Espíndola J C, Vilar V J P. Innovative light-driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: a review[J]. Chemical Engineering Journal, 2020, 394: 124865. |
26 | Arima V, Watts P, Pascali G. Microfluidics in planar microchannels: synthesis of chemical compounds on-chip[M]//Lab-on-a-Chip Devices and Micro-Total Analysis Systems. Springer, 2015. |
27 | 张权, 王宏志, 李耀刚, 等. ZnO一维纳米结构修饰的微反应器的构建及其催化性能研究[J]. 硅酸盐通报, 2013, 32(7): 1231-1236. |
Zhang Q, Wang H Z, Li Y G, et al. Fabrication of ZnO one-dimensional nanostructure modified microreactor and its catalytic performance research[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1231-1236. | |
28 | Wang F, Tong J, Bian C, et al. A fully integrated on-chip electrochemical microreactor for the detection of total phosphorus in freshwater[C]// 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2015: 1468-1471. |
29 | Lei L, Wang N, Zhang X M, et al. Optofluidic planar reactors for photocatalytic water treatment using solar energy[J]. Biomicrofluidics, 2010, 4(4): 43004. |
30 | Vezzoli M, Farrell T, Baker A, et al. Optimal catalyst thickness in titanium dioxide fixed film reactors: mathematical modelling and experimental validation[J]. Chemical Engineering Journal, 2013, 234: 57-65. |
31 | Wang N, Tan F R, Tsoi C C, et al. Photoelectrocatalytic microreactor for seawater decontamination with negligible chlorine generation[J]. Microsystem Technologies, 2017, 23(10): 4495-4500. |
32 | Kamiya A, Togawa T. Optimal branching structure of the vascular tree[J]. The Bulletin of Mathematical Biophysics, 1972, 34(4): 431-438. |
33 | Damiri H S, Bardaweel H K. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks[J]. Lab on a Chip, 2015, 15(21): 4187-4196. |
34 | Liao W X, Wang N, Wang T S, et al. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification[J]. Biomicrofluidics, 2016, 10(1): 014123. |
35 | Razavi M S, Shirani E, Kassab G S. Scaling laws of flow rate, vessel blood volume, lengths, and transit times with number of capillaries[J]. Frontiers in Physiology, 2018, 9: 581. |
36 | de Sá D S, Vasconcellos L E, de Souza J R, et al. Intensification of photocatalytic degradation of organic dyes and phenol by scale-up and numbering-up of meso- and microfluidic TiO2 reactors for wastewater treatment[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 59-75. |
37 | Mohamed H E A, Sone B T, Khamlich S, et al. Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: photocatalytic degradation of methylene blue[J]. Materials Today: Proceedings, 2021, 36: 328-335. |
38 | Rozman N, Tobaldi D M, Cvelbar U, et al. Hydrothermal synthesis of rare-earth modified titania: influence on phase composition, optical properties, and photocatalytic activity[J]. Materials, 2019, 12(5): E713. |
39 | Meng Z X, Zhang X, Qin J H. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst[J]. Nanoscale, 2013, 5(11): 4687-4690. |
40 | Lamberti A. Microfluidic photocatalytic device exploiting PDMS/TiO2 nanocomposite[J]. Applied Surface Science, 2015, 335: 50-54. |
41 | Urkasame K, Yoshida S, Takanohashi T, et al. Development of TiO2-SiO2 photocatalysts having a microhoneycomb structure by the ice templating method[J]. ACS Omega, 2018, 3(10): 14274-14279. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[6] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[7] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[8] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[9] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[10] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[11] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[12] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[13] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[14] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[15] | 陈向上, 马振杰, 任希华, 贾悦, 吕晓龙, 陈华艳. 三维网络萃取膜的制备及传质效率研究[J]. 化工学报, 2023, 74(3): 1126-1133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||