化工学报 ›› 2023, Vol. 74 ›› Issue (3): 995-1009.DOI: 10.11949/0438-1157.20221448
徐银1(), 蔡洁1, 陈露1, 彭宇1, 刘夫珍1(), 张晖2()
收稿日期:
2022-11-08
修回日期:
2023-01-04
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
刘夫珍,张晖
作者简介:
徐银(1988—),男,博士,副教授,yxu@hubu.edu.cn
基金资助:
Yin XU1(), Jie CAI1, Lu CHEN1, Yu PENG1, Fuzhen LIU1(), Hui ZHANG2()
Received:
2022-11-08
Revised:
2023-01-04
Online:
2023-03-05
Published:
2023-04-19
Contact:
Fuzhen LIU, Hui ZHANG
摘要:
近年来,如何有效去除水中难降解污染物成为水污染治理中的难点问题。可见光催化耦合过硫酸盐活化技术是一种新型水处理工艺,有望成为难降解污染物高效去除的新策略。该耦合技术中,可见光、催化剂及过硫酸盐三者之间的协同效应被最大限度开发与利用,极大提升了处理工艺的氧化性能。本文回顾了该工艺中常用的金属基、碳基及复合型光催化材料,分析了光催化剂类型、元素组分、表面性质对体系氧化效能及反应机理的影响;讨论了有关催化剂光学特性(光学吸收、电荷动力学和能带结构)的主要表征方法;总结了不同体系中起主要氧化作用的活性物种及其生成机制;最后综述了该工艺在处理染料、酚类、新型污染物以及细菌灭活等不同场景中的应用,并对未来研究所面临的问题提出了展望。
中图分类号:
徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009.
Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control[J]. CIESC Journal, 2023, 74(3): 995-1009.
表征目的 | 表征内容 | 表征仪器 | 文献 |
---|---|---|---|
光响应范围 | 紫外-可见漫反射光谱(UV-Vis DRS) | 紫外-可见漫反射光谱仪 | [ |
光生载流子分离状况 | 光致发光光谱(PL) | 荧光光谱仪 | [ |
瞬时光电流(I-t) | 电化学工作站 | [ | |
光生载流子分离状况/电荷传输能力 | 电化学阻抗谱(EIS) | 电化学工作站 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
光生载流子的寿命 | 时间分辨光致发光光谱(TRPL) | 荧光光谱仪 | [ |
禁带宽度 | Kubelka-Munk方程式 | 紫外-可见漫反射光谱仪 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
密度泛函理论(DFT) | Materials Studio、VASP软件 | [ | |
价带电势 | 价带XPS能谱 | X射线光电子能谱 | [ |
导带电势 | 莫特-肖特基(Mott-Schottky)曲线 | 电化学工作站 | [ |
表1 光催化材料表征技术
Table 1 Characterizations of photocatalytic material
表征目的 | 表征内容 | 表征仪器 | 文献 |
---|---|---|---|
光响应范围 | 紫外-可见漫反射光谱(UV-Vis DRS) | 紫外-可见漫反射光谱仪 | [ |
光生载流子分离状况 | 光致发光光谱(PL) | 荧光光谱仪 | [ |
瞬时光电流(I-t) | 电化学工作站 | [ | |
光生载流子分离状况/电荷传输能力 | 电化学阻抗谱(EIS) | 电化学工作站 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
光生载流子的寿命 | 时间分辨光致发光光谱(TRPL) | 荧光光谱仪 | [ |
禁带宽度 | Kubelka-Munk方程式 | 紫外-可见漫反射光谱仪 | [ |
循环伏安曲线(CV) | 电化学工作站 | [ | |
密度泛函理论(DFT) | Materials Studio、VASP软件 | [ | |
价带电势 | 价带XPS能谱 | X射线光电子能谱 | [ |
导带电势 | 莫特-肖特基(Mott-Schottky)曲线 | 电化学工作站 | [ |
VLP-PS体系 | 主要活性物质 | 次要活性物质 | 反应条件 | 污染物去除效率 | 文献 |
---|---|---|---|---|---|
ZnFe2O4/g-C3N4/PMS/Vis | 1O2, h+ | 0.3 g·L-1 catalyst, 0.1 mmol·L-1 双酚A, 0.5 mmol·L-1 PMS, pH 3.5~9.0 | >99.7% in 60 min | [ | |
g-C3N4/PDS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1双酚A, 5.0 mmol·L-1 PDS, pH 3 | 100% in 90 min | [ | |
g-C3N4/PMS/Vis | 0.4 g·L-1 catalyst, 20 mg·L-1 酸性橙Ⅱ, 0.2 g·L-1 PMS, pH 3.82 | 96.3% in 30 min | [ | ||
Co3O4/量子点g-C3N4/ PMS/Vis | h+, | — | 0.2 g·L-1 catalyst, 20 mg·L-1 四环素, 50 mg·L-1 PMS, pH 6 | 97.1% in 10 min | [ |
CoAl-LDHs/g-C3N4/ PMS/Vis | h+ | 0.2 g·L-1 catalyst, 10 μmol·L-1磺胺嘧啶, 0.5 mmol·L-1 PMS, pH 6.0 | 87.1% in 15 min | [ | |
Bi2O3/CuNiFe LDHs/ PDS/Vis | 0.4 g·L-1 catalyst, 10 mg·L-1 洛美沙星, 0.74 mmol·L-1 PDS, pH 6.08 | 84.6% in 40 min | [ | ||
MoO3/g-C3N4/PDS/Vis | 0.6 g·L-1 catalyst, 10 mg·L-1 氧氟沙星, 5 mmol·L-1 PDS, natural pH | 94.4% in 120 min | [ | ||
MIL-53(Fe)/PDS/Vis | — | 0.2 g·L-1 catalyst, 300 mg·L-1 四环素, 8.0 mmol·L-1 PDS, pH 3.45 | 99.7% in 80 min | [ | |
K-Fe/PDS/Vis | — | 0.4 g·L-1 catalyst, 0.1 mmol·L-1 罗丹明B, 7.0 mmol·L-1 PDS, pH 5.0 | 97.0% in 180 min | [ | |
TiO2/AB/PDS/Vis | •OH | 0.5 g·L-1 catalyst, 30 mg·L-1 四环素, 3.0 mmol·L-1 PDS, pH 4.1 | 93.3% in 120 min | [ | |
g-C3N4/Fe(Ⅲ)/PDS/Vis | — | 1.875 g·L-1 g-C3N4 with 0.35 g·L-1 Fe3+, 10 mg·L-1 苯酚, 0.3 g·L-1 PDS, natural pH | 33% in 90 min | [ | |
Co3O4/CeO2/PMS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.1 g·L-1 PMS, pH 3.45 | 87.8% in 50 min | [ | |
Ag/AgCl@ZIF-8/g-C3N4/PMS/Vis | 0.01 g·L-1 catalyst, 0.01 g·L-1 洛美沙星, 2.0 mmol·L-1 PMS, pH 6.5 | 87.3% in 60 min | [ | ||
Bi12O17Cl2/MIL-100(Fe)/PDS/Vis | h+, | 0.25 g·L-1 catalyst, 10 mg·L-1 双酚A, 2.0 mmol·L-1 PDS, pH 5.2 | 99.3% in 60 min | [ | |
Ilmenite/PDS/Vis | 1O2 | 1.0 g·L-1 catalyst, 5 log10 cfu·ml-1E.coli, 0.5 mmol·L-1 PDS, pH 5 | 100% in 20min | [ | |
p(HEA-APTM)-BiOI/ PMS/Vis | h+, 1O2 | 2.0 g·L-1 catalyst, 50 mg·L-1 对羟基苯甲酸甲酯, 1.5 mmol·L-1 PMS, pH 3.18 | 100% in 90min | [ | |
γ-Fe2O3/MnO2/PMS/Vis | 0.15 g·L-1 catalyst, 50 μmol·L-1 环丙沙星, 0.3 g·L-1 PMS, neutral pH | 98.3% in 30 min | [ | ||
Bi2MoO6/PDS/Vis | h+, | •OH | 0.5 g·L-1 catalyst, 20 mg·L-1 四环素, 4.0 g·L-1 PDS, pH 4.4 | 83.0% in 60 min | [ |
CuBi2O4/PMS/Vis | h+, 1O2 | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.125 g·L-1 PMS, pH 5.0 | > 90% in 30 min | [ | |
g-C3N4/MnFe2O4/graphene/PDS/Vis | h+, •OH, | — | 1.0 g·L-1 catalyst, 20 mg·L-1 甲硝唑, 0.01 mol·L-1 PDS, natural pH | 94.5% in 60 min | [ |
CuBi2O4/MnO2/PMS/Vis | h+, | 0.3 g·L-1 catalyst, 10.0 mg·L-1 头孢噻呋, 0.4 g·L-1 PMS, pH 11.0 | 93.6% in 40 min | [ |
表2 不同VLP-PS体系中主要活性物质
Table 2 The reactive species in VLP-PS systems
VLP-PS体系 | 主要活性物质 | 次要活性物质 | 反应条件 | 污染物去除效率 | 文献 |
---|---|---|---|---|---|
ZnFe2O4/g-C3N4/PMS/Vis | 1O2, h+ | 0.3 g·L-1 catalyst, 0.1 mmol·L-1 双酚A, 0.5 mmol·L-1 PMS, pH 3.5~9.0 | >99.7% in 60 min | [ | |
g-C3N4/PDS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1双酚A, 5.0 mmol·L-1 PDS, pH 3 | 100% in 90 min | [ | |
g-C3N4/PMS/Vis | 0.4 g·L-1 catalyst, 20 mg·L-1 酸性橙Ⅱ, 0.2 g·L-1 PMS, pH 3.82 | 96.3% in 30 min | [ | ||
Co3O4/量子点g-C3N4/ PMS/Vis | h+, | — | 0.2 g·L-1 catalyst, 20 mg·L-1 四环素, 50 mg·L-1 PMS, pH 6 | 97.1% in 10 min | [ |
CoAl-LDHs/g-C3N4/ PMS/Vis | h+ | 0.2 g·L-1 catalyst, 10 μmol·L-1磺胺嘧啶, 0.5 mmol·L-1 PMS, pH 6.0 | 87.1% in 15 min | [ | |
Bi2O3/CuNiFe LDHs/ PDS/Vis | 0.4 g·L-1 catalyst, 10 mg·L-1 洛美沙星, 0.74 mmol·L-1 PDS, pH 6.08 | 84.6% in 40 min | [ | ||
MoO3/g-C3N4/PDS/Vis | 0.6 g·L-1 catalyst, 10 mg·L-1 氧氟沙星, 5 mmol·L-1 PDS, natural pH | 94.4% in 120 min | [ | ||
MIL-53(Fe)/PDS/Vis | — | 0.2 g·L-1 catalyst, 300 mg·L-1 四环素, 8.0 mmol·L-1 PDS, pH 3.45 | 99.7% in 80 min | [ | |
K-Fe/PDS/Vis | — | 0.4 g·L-1 catalyst, 0.1 mmol·L-1 罗丹明B, 7.0 mmol·L-1 PDS, pH 5.0 | 97.0% in 180 min | [ | |
TiO2/AB/PDS/Vis | •OH | 0.5 g·L-1 catalyst, 30 mg·L-1 四环素, 3.0 mmol·L-1 PDS, pH 4.1 | 93.3% in 120 min | [ | |
g-C3N4/Fe(Ⅲ)/PDS/Vis | — | 1.875 g·L-1 g-C3N4 with 0.35 g·L-1 Fe3+, 10 mg·L-1 苯酚, 0.3 g·L-1 PDS, natural pH | 33% in 90 min | [ | |
Co3O4/CeO2/PMS/Vis | — | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.1 g·L-1 PMS, pH 3.45 | 87.8% in 50 min | [ | |
Ag/AgCl@ZIF-8/g-C3N4/PMS/Vis | 0.01 g·L-1 catalyst, 0.01 g·L-1 洛美沙星, 2.0 mmol·L-1 PMS, pH 6.5 | 87.3% in 60 min | [ | ||
Bi12O17Cl2/MIL-100(Fe)/PDS/Vis | h+, | 0.25 g·L-1 catalyst, 10 mg·L-1 双酚A, 2.0 mmol·L-1 PDS, pH 5.2 | 99.3% in 60 min | [ | |
Ilmenite/PDS/Vis | 1O2 | 1.0 g·L-1 catalyst, 5 log10 cfu·ml-1E.coli, 0.5 mmol·L-1 PDS, pH 5 | 100% in 20min | [ | |
p(HEA-APTM)-BiOI/ PMS/Vis | h+, 1O2 | 2.0 g·L-1 catalyst, 50 mg·L-1 对羟基苯甲酸甲酯, 1.5 mmol·L-1 PMS, pH 3.18 | 100% in 90min | [ | |
γ-Fe2O3/MnO2/PMS/Vis | 0.15 g·L-1 catalyst, 50 μmol·L-1 环丙沙星, 0.3 g·L-1 PMS, neutral pH | 98.3% in 30 min | [ | ||
Bi2MoO6/PDS/Vis | h+, | •OH | 0.5 g·L-1 catalyst, 20 mg·L-1 四环素, 4.0 g·L-1 PDS, pH 4.4 | 83.0% in 60 min | [ |
CuBi2O4/PMS/Vis | h+, 1O2 | 0.5 g·L-1 catalyst, 5.0 mg·L-1环丙沙星, 0.125 g·L-1 PMS, pH 5.0 | > 90% in 30 min | [ | |
g-C3N4/MnFe2O4/graphene/PDS/Vis | h+, •OH, | — | 1.0 g·L-1 catalyst, 20 mg·L-1 甲硝唑, 0.01 mol·L-1 PDS, natural pH | 94.5% in 60 min | [ |
CuBi2O4/MnO2/PMS/Vis | h+, | 0.3 g·L-1 catalyst, 10.0 mg·L-1 头孢噻呋, 0.4 g·L-1 PMS, pH 11.0 | 93.6% in 40 min | [ |
1 | Yu Y, Li N, Lu X K, et al. Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: performance and internal mechanism[J]. Journal of Hazardous Materials, 2022, 421: 126735. |
2 | Zhou P, Yang Y Y, Ren W, et al. Molecular and kinetic insights to boron boosted Fenton-like activation of peroxymonosulfate for water decontamination[J]. Applied Catalysis B: Environmental, 2022, 319: 121916. |
3 | Chen H X, Xu Y, Zhu K M, et al. Understanding oxygen-deficient La2CuO4- δ perovskite activated peroxymonosulfate for bisphenol A degradation: the role of localized electron within oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 284: 119732. |
4 | Li M, Zhang H, Liu Z L, et al. Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation[J]. Chemical Engineering Journal, 2022, 450: 138147. |
5 | Liu J J, He H, Shen Z R, et al. Photoassisted highly efficient activation of persulfate over a single-atom Cu catalyst for tetracycline degradation: process and mechanism[J]. Journal of Hazardous Materials, 2022, 429: 128398. |
6 | Tian D Q, Zhou H Y, Zhang H, et al. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies[J]. Chemical Engineering Journal, 2022, 428: 131166. |
7 | Zhang G Q, Zhao L Y, Hu X X, et al. Synergistic activation of sulfate by TiO2 nanotube arrays-based electrodes for berberine degradation: insight into pH-dependant ORR-strengthened reactive radicals co-generation mechanism[J]. Applied Catalysis B: Environmental, 2022, 313: 121453. |
8 | 韩雪, 高生旺, 王国英, 等. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
Han X, Gao S W, Wang G Y, et al. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping[J]. CIESC Journal, 2022, 73(4): 1743-1753. | |
9 | Zhang Y, Sun J, Guo Z W, et al. The decomplexation of Cu-EDTA by electro-assisted heterogeneous activation of persulfate via acceleration of Fe(Ⅱ)/Fe(Ⅲ) redox cycle on Fe-MOF catalyst[J]. Chemical Engineering Journal, 2022, 430: 133025. |
10 | 尹飞, 王翠, 童少平. rGO-Fe3O4活化过硫酸盐处理酸性红73[J]. 化工学报, 2019, 70(1): 207-213, 430. |
Yin F, Wang C, Tong S P. Treatment of acid red 73 by persulfate in the presence of rGO-Fe3O4 composite[J]. CIESC Journal, 2019, 70(1): 207-213, 430. | |
11 | Oyekunle D T, Gendy E A, Ifthikar J, et al. Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review[J]. Chemical Engineering Journal, 2022, 437: 135277. |
12 | Hashem E M, Hamza M A, El-Shazly A N, et al. Novel Z-Scheme/Type-Ⅱ CdS@ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: kinetic and mechanistic insights[J]. Chemosphere, 2021, 277: 128730. |
13 | Liu F Z, Wang X, Liu Z Z, et al. Peroxymonosulfate enhanced photocatalytic degradation of Reactive Black 5 by ZnO-GAC: key influencing factors, stability and response surface approach[J]. Separation and Purification Technology, 2021, 279: 119754. |
14 | Gao Y W, Li S M, Li Y X, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B: Environmental, 2017, 202: 165-174. |
15 | Li R M, Hu H W, Ma Y Y, et al. Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light[J]. Journal of Cleaner Production, 2020, 276: 124246. |
16 | Tang H L, Li R M, Fan X H, et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107797. |
17 | 刘杨, 郭洪光, 李伟, 等. 可见光下TiO2协同过硫酸盐光催化降解罗丹明[J]. 中南民族大学学报(自然科学版), 2019, 38(1): 34-38. |
Liu Y, Guo H G, Li W, et al. Photocatalytic degradation of Rhodamine B by persulfate-assisted TiO2 under visible-light irradiation[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2019, 38(1): 34-38. | |
18 | Monteagudo J M, Durán A, San Martín I, et al. Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis[J]. Chemical Engineering Journal, 2019, 364: 257-268. |
19 | Grilla E, Matthaiou V, Frontistis Z, et al. Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: a pilot plant study[J]. Catalysis Today, 2019, 328: 216-222. |
20 | Wang A Q, Chen Z, Zheng Z K, et al. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnO x microspheres[J]. Chemical Engineering Journal, 2020, 379: 122340. |
21 | Zhu B Y, Cheng H, Ma J F, et al. Bi2MoO6 microspheres for the degradation of orange Ⅱ by heterogeneous activation of persulfate under visible light[J]. Material Letters, 2020, 261: 127099. |
22 | Shah N S, Khan J A, Sayed M, et al. Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of H S O 5 - : toxicities and degradation pathways investigation[J]. Chemical Engineering Journal, 2018, 351: 841-855. |
23 | Dong J Q, Zhang Y, Hussain M I, et al. g-C3N4: properties, pore modifications, and photocatalytic applications[J]. Nanomaterials, 2021, 12(1): 121. |
24 | Song Y L, Huang L, Zhang X J, et al. Synergistic effect of persulfate and g-C3N4 under simulated solar light irradiation: implication for the degradation of sulfamethoxazole[J]. Journal of Hazardous Materials, 2020, 393: 122379. |
25 | Liu B C, Qiao M, Wang Y B, et al. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation[J]. Chemosphere, 2017, 189: 115-122. |
26 | 盛寒祯, 尤宏, 柳锋, 等. 可见光驱动下氧掺杂氮化碳活化过硫酸盐降解罗丹明B[J]. 环境科学学报, 2020, 40(8): 2708-2714. |
Sheng H Z, You H, Liu F, et al. Degradation of Rhodamine B by persulfate activated by oxygen-doped carbon nitride under visible light irradiation[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2708-2714. | |
27 | Jiang X W, Li J, Fang J, et al. The photocatalytic performance of g-C3N4 from melamine hydrochloride for dyes degradation with peroxymonosulfate[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336: 54-62. |
28 | Gao H H, Yang H C, Xu J Z, et al. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation[J]. Small, 2018, 14(31): 1801353. |
29 | Liu W, Zhou J B, Yao J. Shuttle-like CeO2/g-C3N4 composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacin under visible light[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110062. |
30 | 杜新玉. g-C3N4/TiO2可见光活化过硫酸盐降解微污染物的研究[D]. 西安: 西安建筑科技大学, 2020. |
Du X Y. Performance on visible-light activation of persulfate by g-C3N4/TiO2 toward degradation of micropollutants[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. | |
31 | 孙丹阳, 翟婷婷, 黎汉生, 等. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71(S2): 1-11. |
Sun D Y, Zhai T T, Li H S, et al. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71(S2): 1-11. | |
32 | Zeng H X, Zhang H J, Deng L, et al. Peroxymonosulfate-assisted photocatalytic degradation of sulfadiazine using self-assembled multi-layered CoAl-LDH/g-C3N4 heterostructures: performance, mechanism and eco-toxicity evaluation[J]. Journal of Water Process Engineering, 2020, 33: 101084. |
33 | Zhang H X, Nengzi L C, Wang Z J, et al. Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight[J]. Journal of Hazardous Materials, 2020, 383: 121236. |
34 | Jin C Y, Kang J, Li Z L, et al. Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate[J]. Applied Surface Science, 2020, 514: 146076. |
35 | Zhang J J, Zhao X, Wang Y B, et al. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4 [J]. Applied Catalysis B: Environmental, 2018, 237: 976-985. |
36 | Chen D N, Xie Z J, Zeng Y Q, et al. Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: mechanism; kinetic; and products[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 250-259. |
37 | 杨波, 张永丽, 郭洪光, 等. 磁性卤氧化铋耦合过硫酸盐催化光降解AO7[J]. 黑龙江大学自然科学学报, 2017, 34(2): 196-201. |
Yang B, Zhang Y L, Guo H G, et al. Persulfate-assisted photocatalytic degradation of AO7 by magnetic bismuth oxyhalide compounds[J]. Journal of Natural Science of Heilongjiang University, 2017, 34(2): 196-201. | |
38 | 王敬荃, 张永丽, 翟官星, 等. BiOI/Fe3O4光催化耦合过一硫酸氢盐降解酸性橙Ⅱ研究[J]. 化工新型材料, 2018, 46(9): 209-212. |
Wang J Q, Zhang Y L, Zhai G X, et al. Activited peroxymonosulfate (PMS) degradation of acid orange Ⅱ by visible light-driven photocatalytic material BiOI/Fe3O4 [J]. New Chemical Materials, 2018, 46(9): 209-212. | |
39 | Lin K Y A, Zhang Z Y. α-Sulfur as a metal-free catalyst to activate peroxymonosulfate under visible light irradiation for decolorization[J]. RSC Advances, 2016, 6(18): 15027-15034. |
40 | Tao Y F, Wei M Y, Xia D S, et al. Polyimides as metal-free catalysts for organic dye degradation in the presence peroxymonosulfate under visible light irradiation[J]. RSC Advances, 2015, 5(119): 98231-98240. |
41 | Zhang Y, Zhou J B, Chen X, et al. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway[J]. Chemical Engineering Journal, 2019, 369: 745-757. |
42 | Du X D, Zhou M H. Strategies to enhance catalytic performance of metal-organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal[J]. Chemical Engineering Journal, 2021, 403: 126346. |
43 | Zhang Y, Zhou J B, Chen J H . et al. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation[J]. Journal of Hazardous Materials, 2020, 392: 122315. |
44 | Wu Y Q, Zhao X Y, Tian J T, et al. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO6 coupled magnetic biochar for degradation of ciprofloxacin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129667. |
45 | Wang M, Jin C Y, Kang J, et al. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: characterization, efficiency and mechanism[J]. Chemical Engineering Journal, 2021, 416: 128118. |
46 | Zhu Z Y, Tang H F, Du Y, et al. Filter‐membrane treatment of continuous-flow tetracycline through photocatalysis-assisted peroxydisulfate oxidation[J]. AIChE Journal, 2022, 68(6): 17654. |
47 | Lin H, Tang X, Wang J, et al. Enhanced visible-light photocatalysis of clofibric acid using graphitic carbon nitride modified by cerium oxide nanoparticles[J]. Journal of Hazardous Materials, 2021, 405: 124204. |
48 | Sarkar P, Roy D, Bera B, et al. Efficient photocatalytic degradation of ciprofloxacin using novel dual Z-scheme gCN/CuFe2O4/MoS2 mediated peroxymonosulphate activation[J]. Chemical Engineering Journal, 2022, 430: 132834. |
49 | Surendra B S. Green engineered synthesis of Ag-doped CuFe2O4: characterization, cyclic voltammetry and photocatalytic studies[J]. Journal of Science: Advanced Materials and Devices, 2018, 3(1): 44-50. |
50 | Surendra B S, Veerabhdraswamy M, Anantharaju K S, et al. Green and chemical-engineered CuFe2O4: characterization, cyclic voltammetry, photocatalytic and photoluminescent investigation for multifunctional applications[J]. Journal of Nanostructure in Chemistry, 2018, 8(1): 45-59. |
51 | Wadhai S, Jadhav Y, Thakur P. Synthesis of metal-free phosphorus doped graphitic carbon nitride-P25 (TiO2) composite: characterization, cyclic voltammetry and photocatalytic hydrogen evolution[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110958. |
52 | Zhang Z, Du C Y, Zhang Y, et al. Degradation of oxytetracycline by magnetic MOFs heterojunction photocatalyst with persulfate: high stability and wide range[J]. Environmental Science and Pollution Research, 2022, 29(20): 30019-30029. |
53 | Gao Y W, Zhang Z Y, Li S M, et al. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation[J]. Applied Catalysis B: Environmental, 2016, 185: 22-30. |
54 | Zhang L P, Ran J R, Qiao S Z, et al. Characterization of semiconductor photocatalysts[J]. Chemical Society Reviews, 2019, 48(20): 5184-5206. |
55 | Chen R Y, Dou X C, Xia J Z, et al. Boosting peroxymonosulfate activation over Bi2MoO6/CuWO4 to rapidly degrade tetracycline: intermediates and mechanism[J]. Separation and Purification Technology, 2022, 296: 121345. |
56 | Xiang W M, Ji Q Y, Xu C M, et al. Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of p-n/n-n dual heterojunction under simulated sunlight by persulfate[J]. Applied Catalysis B: Environmental, 2021, 285: 119847. |
57 | Zhang T H, Liu Y J, Rao Y D, et al. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light[J]. Chemical Engineering Journal, 2020, 384: 123350. |
58 | Hu J Y, Tian K, Jiang H. Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(Ⅲ)/persulfate system[J]. Chemosphere, 2016, 148: 34-40. |
59 | Shen C H, Wen X J, Fei Z H, et al. Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 p-n heterojunction photocatalysts[J]. Chemical Engineering Journal, 2020, 391: 123612. |
60 | Zhou J B, Liu W, Cai W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin[J]. Science of the Total Environment, 2019, 696: 133962. |
61 | Zhao C, Wang J S, Chen X, et al. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(Ⅵ) sequestration and activation of persulfate for bisphenol A degradation[J]. Science of the Total Environment, 2021, 752: 141901. |
62 | Xia D H, He H J W, Liu H D, et al. Persulfate-mediated catalytic and photocatalytic bacterial inactivation by magnetic natural ilmenite[J]. Applied Catalysis B: Environmental, 2018, 238: 70-81. |
63 | Hu Y Y, Li Z K, Yang J H, et al. Degradation of methylparaben using BiOI-hydrogel composites activated peroxymonosulfate under visible light irradiation[J]. Chemical Engineering Journal, 2019, 360: 200-211. |
64 | Zhao J H, Wang Y Z, Li N, et al. Efficient degradation of ciprofloxacin by magnetic γ-Fe2O3-MnO2 with oxygen vacancy in visible-light/peroxymonosulfate system[J]. Chemosphere, 2021, 276: 130257. |
65 | Feng Q Q, Zhou J B, Zhang Y. Coupling Bi2MoO6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(21): 19108-19118. |
66 | Zhang J L, Zhai C Y, Zhao W, et al. Insight into combining visible-light photocatalysis with transformation of dual metal ions for enhancing peroxymonosulfate activation over dibismuth copper oxide[J]. Chemical Engineering Journal, 2020, 390: 124582. |
67 | Wang X Y, Wang A Q, Ma J. Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites[J]. Journal of Hazardous Materials, 2017, 336: 81-92. |
68 | Zhang H X, Nengzi L C, Li X L, et al. Construction of CuBi2O4/MnO2 composite as Z-scheme photoactivator of peroxymonosulfate for degradation of antibiotics[J]. Chemical Engineering Journal, 2020, 386: 124011. |
69 | 马英豪. 铜铁水滑石光活化过硫酸盐降解甲基紫的研究[D]. 长沙: 湖南大学, 2019. |
Ma Y H. Sulfate radical induced degradation of methyl violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate[D]. Changsha: Hunan University, 2019. | |
70 | Heidarpour H, Padervand M, Soltanieh M, et al. Enhanced decolorization of Rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst[J]. Chemical Engineering Research and Design, 2020, 153: 709-720. |
71 | 沙俊鹏, 唐海. 纳米TiO2/介孔ZSM-5协同过硫酸盐光催化降解硝基苯酚废水[J]. 安徽工程大学学报, 2015, 30(1): 32-35. |
Sha J P, Tang H. The photocatalytic degradation of pNP wastewater by nano TiO2/mesoporous ZSM-5 synergized with persulfate[J]. Journal of Anhui Polytechnic University, 2015, 30(1): 32-35. | |
72 | Devi L G, Rajashekhar K E. A kinetic model based on non-linear regression analysis is proposed for the degradation of phenol under UV/solar light using nitrogen doped TiO2 [J]. Journal of Molecular Catalysis A: Chemical, 2011, 334(1-2): 65-76. |
73 | Lin K Y A, Zhang Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. |
74 | Ahmed S F, Mofijur M, Nuzhat S, et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater[J]. Journal of Hazardous Materials, 2021, 416: 125912. |
75 | Ji Q Y, Cheng X Y, Sun D Y, et al. Persulfate enhanced visible light photocatalytic degradation of iohexol by surface-loaded perylene diimide/acidified biochar[J]. Chemical Engineering Journal, 2021, 414: 128793. |
76 | Wang W J, Wang H N, Li G Y, et al. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms[J]. Water Research, 2020, 176: 115746. |
77 | 王韩纳. 过硫酸盐的可见光活化及其对细菌的杀灭机理研究[D]. 广州: 广东工业大学, 2019. |
Wang H N. Activation of persulfate for water disinfection: efficiency and mechanisms[D]. Guangzhou: Guangdong University of Technology, 2019. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 756
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||