化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1246-1253.DOI: 10.11949/0438-1157.20191507
收稿日期:
2019-12-11
修回日期:
2019-12-18
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
史彬
作者简介:
郑必鸣(1994—),男,硕士研究生,基金资助:
Biming ZHENG(),Bin SHI(
),Liexiang YAN
Received:
2019-12-11
Revised:
2019-12-18
Online:
2020-03-05
Published:
2020-03-05
Contact:
Bin SHI
摘要:
不确定条件下的间歇生产调度优化是生产调度问题研究中具有挑战性的课题。提出了一种基于混合整数线性规划(MILP)的鲁棒优化模型,来优化不确定条件下的生产调度决策。考虑到生产过程中的操作成本和原料成本,建立了以净利润最大为调度目标的确定性数学模型。然后考虑需求、处理时间、市场价格三种不确定因素,建立可调整保守程度的鲁棒优化模型并转换成鲁棒对应模型。实例结果表明,鲁棒优化的间歇生产调度模型较确定性模型利润减少,但生产任务数量增加,设备空闲时间缩短,从而增强了调度方案的可靠性,实现了不确定条件下生产操作性和经济性的综合优化。
中图分类号:
郑必鸣, 史彬, 鄢烈祥. 多因素不确定条件下的间歇生产调度优化[J]. 化工学报, 2020, 71(3): 1246-1253.
Biming ZHENG, Bin SHI, Liexiang YAN. Optimization of batch production scheduling under multi-factor uncertain conditions[J]. CIESC Journal, 2020, 71(3): 1246-1253.
Task | Label(i) | Unit | Label(j) | fixci/USD | varci/(USD·kg-1) | ||||
---|---|---|---|---|---|---|---|---|---|
heating | H | heater | HR | 0.667 | 0.00667 | 100 | — | 150 | 1 |
reaction 1 | R1 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 2 | R2 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 3 | R3 | reactor 1 | RR1 | 0.667 | 0.01332 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 0.667 | 0.008325 | 80 | — | ||||
separation | S | separator | SR | 1.3342 | 0.00666 | 200 | — | 150 | 1 |
表1 案例中与任务相关的工艺和成本数据
Table 1 Process and cost data related to tasks in the case
Task | Label(i) | Unit | Label(j) | fixci/USD | varci/(USD·kg-1) | ||||
---|---|---|---|---|---|---|---|---|---|
heating | H | heater | HR | 0.667 | 0.00667 | 100 | — | 150 | 1 |
reaction 1 | R1 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 2 | R2 | reactor 1 | RR1 | 1.334 | 0.02664 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 1.334 | 0.01665 | 80 | — | ||||
reaction 3 | R3 | reactor 1 | RR1 | 0.667 | 0.01332 | 50 | — | 100 | 0.5 |
reactor 2 | RR2 | 0.667 | 0.008325 | 80 | — | ||||
separation | S | separator | SR | 1.3342 | 0.00666 | 200 | — | 150 | 1 |
Material | Stis/kg | pris/(USD·kg-1) | dems/kg | |
---|---|---|---|---|
S1 | UL | AA | 1.5 | 0 |
S2 | UL | AA | 1.5 | 0 |
S3 | UL | AA | 1.5 | 0 |
S4 | 100 | 0 | 0 | 0 |
S5 | 200 | 0 | 0 | 0 |
S6 | 150 | 0 | 0 | 0 |
S7 | 200 | 0 | 0 | 0 |
S8 | UL | 0 | 15 | 80 |
S9 | UL | 0 | 15 | 100 |
表2 案例中的物料的库存、初始量、价格和需求量数据
Table 2 Inventory, initial amounts, price, and demand data for materials in the case
Material | Stis/kg | pris/(USD·kg-1) | dems/kg | |
---|---|---|---|---|
S1 | UL | AA | 1.5 | 0 |
S2 | UL | AA | 1.5 | 0 |
S3 | UL | AA | 1.5 | 0 |
S4 | 100 | 0 | 0 | 0 |
S5 | 200 | 0 | 0 | 0 |
S6 | 150 | 0 | 0 | 0 |
S7 | 200 | 0 | 0 | 0 |
S8 | UL | 0 | 15 | 80 |
S9 | UL | 0 | 15 | 100 |
Item | Demand uncertainty | Process time uncertainty | Price uncertainty | |||
---|---|---|---|---|---|---|
range | ±30% | [0,1] | ±25% | [0,1] | ±5% | [0,5] |
表3 三种不确定因素的波动范围和预算参数取值范围
Table 3 Range of fluctuations for three uncertain factors and budget parameters
Item | Demand uncertainty | Process time uncertainty | Price uncertainty | |||
---|---|---|---|---|---|---|
range | ±30% | [0,1] | ±25% | [0,1] | ±5% | [0,5] |
Item | Budget parameter( | |||||||
---|---|---|---|---|---|---|---|---|
(0,0,0) | (0.1,0.1,0.5) | (0.2,0.2,1) | (0.3,0.3,1.5) | (0.4,0.4,2) | (0.5,0.5,2.5) | (0.6,0.6,3) | (0.7,0.7,3.5) | |
profit/USD | 1435.75 | 1382.59 | 1288.46 | 1192.24 | 1100.94 | 1032.97 | 849.39 | / |
CPU time/s | 0.31 | 0.38 | 0.38 | 0.53 | 0.59 | 0.64 | 0.78 | 0.77 |
表4 同时考虑三种不确定因素的求解结果
Table 4 Solution results with all uncertainties
Item | Budget parameter( | |||||||
---|---|---|---|---|---|---|---|---|
(0,0,0) | (0.1,0.1,0.5) | (0.2,0.2,1) | (0.3,0.3,1.5) | (0.4,0.4,2) | (0.5,0.5,2.5) | (0.6,0.6,3) | (0.7,0.7,3.5) | |
profit/USD | 1435.75 | 1382.59 | 1288.46 | 1192.24 | 1100.94 | 1032.97 | 849.39 | / |
CPU time/s | 0.31 | 0.38 | 0.38 | 0.53 | 0.59 | 0.64 | 0.78 | 0.77 |
1 | Lappas N H, Gounaris C E. Multi-stage adjustable robust optimization for process scheduling under uncertainty[J]. AIChE Journal, 2016, 62(5): 1646-1667. |
2 | Shang C, You F. Distributionally robust optimization for planning and scheduling under uncertainty[J]. Computers & Chemical Engineering, 2018, 110: 53-68. |
3 | Dias L S, Ierapetritou M G. Integration of scheduling and control under uncertainties: review and challenges[J]. Chemical Engineering Research and Design, 2016, 116: 98-113. |
4 | Shi H, You F. A computational framework and solution algorithms for two-stage adaptive robust scheduling of batch manufacturing processes under uncertainty[J]. AIChE Journal, 2016, 62(3): 687-703. |
5 | 李祖奎, Ierapetritou M, 薛美盛. 过程工业不确定条件下的计划与调度优化[J]. 化工进展, 2009, 28(7): 1122-1128. |
Li Z K, Ierapetritou M, Xue M S. Planning and scheduling under uncertainty in process industry[J]. Chemical Industry and Engineering Progress, 2009, 28(7): 1122-1128. | |
6 | Ning C, You F. Data-driven adaptive nested robust optimization: general modeling framework and efficient computational algorithm for decision making under uncertainty[J]. AIChE Journal, 2017, 63(9): 3790-3817. |
7 | Chen Y, Yuan Z, Chen B. Process optimization with consideration of uncertainties—an overview[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 108-114. |
8 | Bonfill A, Bagajewicz M, Espuna A, et al. Risk management in the scheduling of batch plants under uncertain market demand[J]. Industrial & Engineering Chemistry Research, 2004, 43(3): 741-750. |
9 | Balasubramanian J, Grossmann I E. A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times[J]. Computers & Chemical Engineering, 2002, 26(1): 41-57. |
10 | 王飞, 孙力, 董世兴. 生产需求不确定的间歇生产调度决策[J]. 化工进展, 2009, 28(S1): 565-568. |
Wang F, Sun L, Dong S X. Scheduling decision of batch production with uncertain production demand[J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 565-568. | |
11 | 耿佳灿, 顾幸生. 不确定条件下中间存储时间有限多产品间歇生产过程调度[J]. 化工学报, 2015, 66(1): 357-365. |
Geng J C, Gu X S. Time-constrained intermediate storage multiproduct batch process scheduling with uncertainty[J]. CIESC Journal, 2015, 66(1): 357-365. | |
12 | 丁然, 李歧强, 孙同景. 不确定处理时间批处理过程的鲁棒调度新策略[J]. 系统工程理论与实践, 2006, 26(4): 78-84. |
Ding R, Li Q Q, Sun T J. Novel robust scheduling strategy for batch process with uncertain processing time[J]. System Engineering-Theory & Practice, 2006, 26 (4): 78–84. | |
13 | Janak S L, Lin X, Floudas C A. A new robust optimization approach for scheduling under uncertainty(II): Uncertainty with known probability distribution[J]. Computers & Chemical Engineering, 2007, 28(6): 1069-1085. |
14 | 田野, 董宏光, 邹雄, 等. 考虑需求不确定性的化工生产计划与调度集成[J]. 化工学报, 2014, 65(9): 3552-3558. |
Tian Y, Dong H G, Zou X, et al. Chemical production planning and scheduling integration under demand uncertainty[J]. CIESC Journal, 2014, 65(9): 3552-3558. | |
15 | 陈浩, 孙力, 贺高红. 间歇生产调度优化模型的分周期逼近算法[J]. 计算机与应用化学, 2012, 29(1): 45-48. |
Chen H, Sun L, He G H. Periodic approximation algorithm to solve batch plant scheduling model[J]. Computers & Applied Chemistry, 2012, 29(1): 45-48. | |
16 | 双兵, 顾幸生. 需求量不确定条件下连续过程生产调度[J]. 华东理工大学学报, 2004,30(2): 183-187. |
Shuang B, Gu X S. Scheduling for continuous production processes with demand uncertainty[J]. Journal of East China University of Science and Technology, 2004,30(2): 183-187. | |
17 | Li Z, Ding R, Floudas C A. A comparative theoretical and computational study on robust counterpart optimization(I): Robust linear optimization and robust mixed integer linear optimization[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10567-10603. |
18 | Ben-Tal A, Ghaoui L E, Nemirovski A. Robust Optimization[M]. Princeton: Princeton University Press, 2009: 3-25. |
19 | Li Z, Ierapetritou M G. Robust optimization for process scheduling under uncertainty[J]. Industrial & Engineering Chemistry Research, 2008, 47(12): 4148-4157. |
20 | Hazaras M J, Swartz C L E, Marlin T E. Flexible maintenance within a continuous-time state-task network framework[J]. Computers & Chemical Engineering, 2012, 46(11): 167-177. |
21 | Shaik M A, Floudas C A. Unification of STN and RTN based models for short-term scheduling of batch plants with shared resources[J]. Chemical Engineering Science, 2013, 98(19): 104-124. |
22 | Ierapetritou M G, Floudas C A. Effective continuous-time formulation for short-term scheduling(1): Multipurpose batch processes[J]. Industrial & Engineering Chemistry Research, 1998, 37(11): 4341-4359. |
23 | Chen G H, Yan L X, Shi B. Modeling and optimization for short term scheduling of multipurpose batch plants[J]. Chinese Journal of Chemical Engineering, 2014, 22(6): 682-689. |
24 | Harjunkoski I, Maravelias C T, Bongers P, et al. Scope for industrial applications of production scheduling models and solution methods[J]. Computers & Chemical Engineering, 2014, 62: 161-193. |
25 | Lagzi S, Lee D Y, Fukasawa R, et al. A computational study of continuous and discrete time formulations for a class of short-term scheduling problems for multipurpose plants[J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8940-8953. |
26 | Lagzi S, Fukasawa R, Ricardez S L. A multitasking continuous time formulation for short-term scheduling of operations in multipurpose plants[J]. Computers & Chemical Engineering, 2017, 97: 135-146. |
27 | Bertsimas D, Sim M. Robust discrete optimization and network flows[J]. Mathematical Programming, 2003, 98(1/2/3): 49-71. |
28 | Sundaramoorthy A, Karimi I A. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants[J]. Chemical Engineering Science, 2005, 60(10): 2679-2702. |
29 | Li Z, Ierapetritou M G. Integrated production planning and scheduling using a decomposition framework[J]. Chemical Engineering Science, 2009, 64(16): 3585-3597. |
30 | Li J, Floudas C A. Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-specific event-based continuous-time approaches[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7446-7469. |
[1] | 高小永, 黄付宇, 郑万鹏, 彭雕, 杨一旭, 黄德先. 考虑调度操作安全平稳性的炼油化工生产过程调度优化[J]. 化工学报, 2023, 74(4): 1619-1629. |
[2] | 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605. |
[3] | 郑万鹏, 高小永, 朱桂瑶, 左信. 原油作业过程优化的研究进展[J]. 化工学报, 2021, 72(11): 5481-5501. |
[4] | 李晨莹, 刘琳琳, 张磊, 顾偲雯, 都健. 不确定性下基于多工况优化的可控性换热器网络综合[J]. 化工学报, 2020, 71(3): 1154-1162. |
[5] | 王湘月, 周晓君, 阳春华. 不确定条件下的湿法炼锌除铜过程机会约束优化控制[J]. 化工学报, 2020, 71(3): 1226-1233. |
[6] | 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130. |
[7] | 于蕾, 邓晓刚, 曹玉苹, 路凯琪. 基于变量分组DTW-MCVA的不等长间歇过程故障检测方法[J]. 化工学报, 2019, 70(9): 3441-3448. |
[8] | 郭孝正, 刘琳琳, 张磊, 都健. 基于截断器半连续操作的间歇过程性质集成[J]. 化工学报, 2019, 70(2): 516-524. |
[9] | 王立敏, 卢丽彬, 高福荣, 周东华. 多阶段间歇过程无穷时域优化线性二次容错控制[J]. 化工学报, 2019, 70(2): 541-547. |
[10] | 孟祥坤, 陈国明, 郑纯亮, 吴翔飞, 朱高庚. 基于风险熵和复杂网络的深水钻井井喷事故风险演化评估[J]. 化工学报, 2019, 70(1): 388-397. |
[11] | 高学金, 黄梦丹, 齐咏生, 王普. PDPSO优化多阶段AR-PCA间歇过程监测方法[J]. 化工学报, 2018, 69(9): 3914-3923. |
[12] | 张雷, 张小刚, 陈华. 基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J]. 化工学报, 2018, 69(6): 2576-2585. |
[13] | 黄卫清, 谭桂平, 钱宇. 化工反应器系统的最大时滞可耐受度指数求解与应用分析[J]. 化工学报, 2018, 69(3): 974-981. |
[14] | 常鹏, 乔俊飞, 王普, 高学金, 李征. 基于MKECA的非高斯性和非线性共存的间歇过程监测[J]. 化工学报, 2018, 69(3): 1200-1206. |
[15] | 刘晓凤, 栾小丽, 刘飞. 基于隐变量空间载荷余弦相似度的间歇过程递推优化[J]. 化工学报, 2018, 69(3): 1167-1172. |
阅读次数 | ||||||
全文 284
|
|
|||||
摘要 |
|
|||||