化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1619-1629.DOI: 10.11949/0438-1157.20230012
高小永1(), 黄付宇1, 郑万鹏1, 彭雕1, 杨一旭1, 黄德先1,2()
收稿日期:
2022-01-04
修回日期:
2022-02-23
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
黄德先
作者简介:
高小永(1985—),男,博士,副教授,x.gao@cup.edu.cn
基金资助:
Xiaoyong GAO1(), Fuyu HUANG1, Wanpeng ZHENG1, Diao PENG1, Yixu YANG1, Dexian HUANG1,2()
Received:
2022-01-04
Revised:
2022-02-23
Online:
2023-04-05
Published:
2023-06-02
Contact:
Dexian HUANG
摘要:
平稳运行是炼油化工企业本质安全运行、生产经济效益和挖潜增效的重要保证,然而由于原油供应以及产品需求多变,炼油化工生产装置的多操作模式运行已成为普遍现象,调度调整也日渐频繁。现有的研究方法未考虑到装置多模式切换等调度调整对平稳操作带来的影响,甚至会导致调度操作方案实际不可行。为此,提出一种考虑调度操作平稳性的炼油化工生产调度优化模型,以解决常规调度优化模型优化产生的调度调整易使生产波动从而导致调度方案不可行的难题。考虑调度操作平稳性的调度优化模型采用离散时间表示,通过操作模式的切换与装置加工速率的波动综合表征系统平稳性,建立以生产成本最低为目标的调度优化模型。为了验证所提出模型在解决实际工业问题时的有效性,采用Julia的JuMP包调用Gurobi求解器对典型案例进行仿真求解。案例仿真结果验证了所提出模型的正确性及可实施性。与常规调度优化相比,以过程动态为表征的调度操作的平稳性提高了10%以上。
中图分类号:
高小永, 黄付宇, 郑万鹏, 彭雕, 杨一旭, 黄德先. 考虑调度操作安全平稳性的炼油化工生产过程调度优化[J]. 化工学报, 2023, 74(4): 1619-1629.
Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation[J]. CIESC Journal, 2023, 74(4): 1619-1629.
模式 | 收率/% | 操作成本/(元/吨) | ||||||
---|---|---|---|---|---|---|---|---|
直馏汽油 | 石脑油 | 煤油 | 轻柴油 | 常压瓦斯油 | 减压瓦斯油 | 减压渣油 | ||
1 | 3.10 | 9.80 | 9.20 | 14.1 | 22.3 | 24.1 | 12.1 | 20 |
2 | 4.50 | 12.8 | 12.1 | 12.4 | 21.8 | 23.4 | 10.7 | 25 |
3 | 5.10 | 18.4 | 15.8 | 10.3 | 20.1 | 21.9 | 7.90 | 30 |
4 | 6.40 | 20.2 | 18.1 | 8.60 | 19.4 | 21.4 | 5.70 | 35 |
表1 常减压蒸馏装置的收率与成本
Table 1 Yield and cost of crude distillation unit
模式 | 收率/% | 操作成本/(元/吨) | ||||||
---|---|---|---|---|---|---|---|---|
直馏汽油 | 石脑油 | 煤油 | 轻柴油 | 常压瓦斯油 | 减压瓦斯油 | 减压渣油 | ||
1 | 3.10 | 9.80 | 9.20 | 14.1 | 22.3 | 24.1 | 12.1 | 20 |
2 | 4.50 | 12.8 | 12.1 | 12.4 | 21.8 | 23.4 | 10.7 | 25 |
3 | 5.10 | 18.4 | 15.8 | 10.3 | 20.1 | 21.9 | 7.90 | 30 |
4 | 6.40 | 20.2 | 18.1 | 8.60 | 19.4 | 21.4 | 5.70 | 35 |
案例 | 时间片段数 | 产品需求个数 |
---|---|---|
1 | 8 | 13 |
2 | 8 | 20 |
3 | 12 | 40 |
表2 案例规模
Table 2 Size of cases
案例 | 时间片段数 | 产品需求个数 |
---|---|---|
1 | 8 | 13 |
2 | 8 | 20 |
3 | 12 | 40 |
产品 | 需求量/t | |||||||
---|---|---|---|---|---|---|---|---|
时间片段 | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
90号汽油 | 0 | 0 | 200 | 0 | 0 | 0 | 0 | 700 |
93号汽油 | 0 | 0 | 300 | 0 | 0 | 0 | 0 | 400 |
97号汽油 | 0 | 0 | 800 | 0 | 0 | 0 | 0 | 0 |
0号柴油 | 100 | 0 | 0 | 0 | 0 | 200 | 0 | 0 |
-10号柴油 | 200 | 0 | 0 | 0 | 0 | 400 | 0 | 0 |
煤油 | 0 | 0 | 0 | 0 | 0 | 500 | 0 | 0 |
乙烯 | 0 | 0 | 200 | 0 | 0 | 0 | 0 | 800 |
丙烯 | 0 | 0 | 0 | 200 | 0 | 0 | 0 | 0 |
表3 案例1的产品需求信息
Table 3 Requirement information of product for case 1
产品 | 需求量/t | |||||||
---|---|---|---|---|---|---|---|---|
时间片段 | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
90号汽油 | 0 | 0 | 200 | 0 | 0 | 0 | 0 | 700 |
93号汽油 | 0 | 0 | 300 | 0 | 0 | 0 | 0 | 400 |
97号汽油 | 0 | 0 | 800 | 0 | 0 | 0 | 0 | 0 |
0号柴油 | 100 | 0 | 0 | 0 | 0 | 200 | 0 | 0 |
-10号柴油 | 200 | 0 | 0 | 0 | 0 | 400 | 0 | 0 |
煤油 | 0 | 0 | 0 | 0 | 0 | 500 | 0 | 0 |
乙烯 | 0 | 0 | 200 | 0 | 0 | 0 | 0 | 800 |
丙烯 | 0 | 0 | 0 | 200 | 0 | 0 | 0 | 0 |
模型 | 约束总数 | 变量总数 | 二元变量数 | 求解耗时/s | 相对Gap值/% | 操作成本/元 | 模式切换次数 | 平稳度/% |
---|---|---|---|---|---|---|---|---|
模型Ⅰ | 10919 | 9655 | 1280 | 600.0 | 5.90 | 16689749.7 | 10 | 81.36 |
模型Ⅱ | 11101 | 9655 | 1280 | 49.0 | 0.01 | 18268224.6 | 12 | 93.24 |
模型Ⅲ | 10919 | 9655 | 1280 | 3.0 | 0 | 17470639.3 | 0 | 85.22 |
模型Ⅳ | 11101 | 9655 | 1280 | 22.3 | 0 | 112882537.2 | 0 | 96.24 |
表4 案例1求解统计
Table 4 Statistics of solutions for case 1
模型 | 约束总数 | 变量总数 | 二元变量数 | 求解耗时/s | 相对Gap值/% | 操作成本/元 | 模式切换次数 | 平稳度/% |
---|---|---|---|---|---|---|---|---|
模型Ⅰ | 10919 | 9655 | 1280 | 600.0 | 5.90 | 16689749.7 | 10 | 81.36 |
模型Ⅱ | 11101 | 9655 | 1280 | 49.0 | 0.01 | 18268224.6 | 12 | 93.24 |
模型Ⅲ | 10919 | 9655 | 1280 | 3.0 | 0 | 17470639.3 | 0 | 85.22 |
模型Ⅳ | 11101 | 9655 | 1280 | 22.3 | 0 | 112882537.2 | 0 | 96.24 |
产品 | 需求量/t | |||||||
---|---|---|---|---|---|---|---|---|
时间片段 | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
90号汽油 | 100 | 0 | 400 | 0 | 0 | 0 | 0 | 800 |
93号汽油 | 200 | 300 | 0 | 0 | 0 | 0 | 0 | 0 |
97号汽油 | 300 | 0 | 400 | 0 | 0 | 0 | 0 | 0 |
0号柴油 | 0 | 0 | 0 | 0 | 0 | 500 | 0 | 200 |
-10号柴油 | 0 | 0 | 0 | 0 | 400 | 100 | 400 | 500 |
煤油 | 300 | 0 | 0 | 0 | 300 | 0 | 0 | 700 |
乙烯 | 0 | 300 | 0 | 0 | 0 | 0 | 0 | 600 |
丙烯 | 0 | 0 | 0 | 0 | 300 | 0 | 0 | 400 |
表5 案例2的产品需求信息
Table 5 Requirement information of product for case 2
产品 | 需求量/t | |||||||
---|---|---|---|---|---|---|---|---|
时间片段 | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
90号汽油 | 100 | 0 | 400 | 0 | 0 | 0 | 0 | 800 |
93号汽油 | 200 | 300 | 0 | 0 | 0 | 0 | 0 | 0 |
97号汽油 | 300 | 0 | 400 | 0 | 0 | 0 | 0 | 0 |
0号柴油 | 0 | 0 | 0 | 0 | 0 | 500 | 0 | 200 |
-10号柴油 | 0 | 0 | 0 | 0 | 400 | 100 | 400 | 500 |
煤油 | 300 | 0 | 0 | 0 | 300 | 0 | 0 | 700 |
乙烯 | 0 | 300 | 0 | 0 | 0 | 0 | 0 | 600 |
丙烯 | 0 | 0 | 0 | 0 | 300 | 0 | 0 | 400 |
模型 | 约束总数 | 变量总数 | 二元变量数 | 求解耗时/s | 相对Gap值/% | 操作成本/元 | 模式切换次数 | 平稳度/% |
---|---|---|---|---|---|---|---|---|
模型Ⅰ | 10919 | 9655 | 1280 | 600.0 | 0.07 | 35696277.6 | 10 | 81.21 |
模型Ⅱ | 11101 | 9655 | 1280 | 139.0 | 0.01 | 37803820.8 | 9 | 92.17 |
模型Ⅲ | 10919 | 9655 | 1280 | 5.3 | 0 | 38446318.6 | 0 | 86.74 |
模型Ⅳ | 11101 | 9655 | 1280 | 234.0 | 0 | 38545371.2 | 0 | 95.93 |
表6 案例2求解统计
Table 6 Statistics of solutions for case 2
模型 | 约束总数 | 变量总数 | 二元变量数 | 求解耗时/s | 相对Gap值/% | 操作成本/元 | 模式切换次数 | 平稳度/% |
---|---|---|---|---|---|---|---|---|
模型Ⅰ | 10919 | 9655 | 1280 | 600.0 | 0.07 | 35696277.6 | 10 | 81.21 |
模型Ⅱ | 11101 | 9655 | 1280 | 139.0 | 0.01 | 37803820.8 | 9 | 92.17 |
模型Ⅲ | 10919 | 9655 | 1280 | 5.3 | 0 | 38446318.6 | 0 | 86.74 |
模型Ⅳ | 11101 | 9655 | 1280 | 234.0 | 0 | 38545371.2 | 0 | 95.93 |
产品 | 需求量/t | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
时间片段 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
90号汽油 | 0 | 200 | 500 | 400 | 0 | 500 | 0 | 100 | 0 | 100 | 0 | 500 |
93号汽油 | 200 | 0 | 0 | 0 | 0 | 400 | 0 | 400 | 0 | 0 | 0 | 600 |
97号汽油 | 300 | 0 | 0 | 100 | 0 | 700 | 0 | 0 | 0 | 300 | 0 | 700 |
0号柴油 | 0 | 0 | 100 | 0 | 0 | 100 | 200 | 300 | 0 | 400 | 0 | 500 |
-10号柴油 | 200 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 200 |
煤油 | 0 | 100 | 0 | 50 | 0 | 300 | 0 | 500 | 50 | 0 | 0 | 200 |
乙烯 | 100 | 0 | 0 | 200 | 0 | 0 | 100 | 0 | 400 | 0 | 0 | 800 |
丙烯 | 0 | 100 | 0 | 0 | 0 | 0 | 400 | 0 | 0 | 100 | 0 | 300 |
表7 案例3的产品需求信息
Table 7 Requirement information of product for case 3
产品 | 需求量/t | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
时间片段 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
90号汽油 | 0 | 200 | 500 | 400 | 0 | 500 | 0 | 100 | 0 | 100 | 0 | 500 |
93号汽油 | 200 | 0 | 0 | 0 | 0 | 400 | 0 | 400 | 0 | 0 | 0 | 600 |
97号汽油 | 300 | 0 | 0 | 100 | 0 | 700 | 0 | 0 | 0 | 300 | 0 | 700 |
0号柴油 | 0 | 0 | 100 | 0 | 0 | 100 | 200 | 300 | 0 | 400 | 0 | 500 |
-10号柴油 | 200 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 200 |
煤油 | 0 | 100 | 0 | 50 | 0 | 300 | 0 | 500 | 50 | 0 | 0 | 200 |
乙烯 | 100 | 0 | 0 | 200 | 0 | 0 | 100 | 0 | 400 | 0 | 0 | 800 |
丙烯 | 0 | 100 | 0 | 0 | 0 | 0 | 400 | 0 | 0 | 100 | 0 | 300 |
模型 | 约束总数 | 变量总数 | 二元变量数 | 求解耗时/s | 相对Gap值/% | 操作成本/元 | 模式切换次数 | 平稳度/% |
---|---|---|---|---|---|---|---|---|
模型Ⅰ | 16523 | 14467 | 12547 | 600.0 | 3.42 | 36522116.2 | 12 | 75.06 |
模型Ⅱ | 16809 | 14467 | 12547 | 600.0 | 8.65 | 37694269.1 | 6 | 94.69 |
模型Ⅲ | 16523 | 14467 | 12547 | 164.0 | 0 | 37941169.1 | 0 | 82.46 |
模型Ⅳ | 16809 | 14467 | 12547 | 600.0 | 2.82 | 37969474.6 | 0 | 96.34 |
表8 案例3求解统计
Table 8 Statistics of solutions for case 3
模型 | 约束总数 | 变量总数 | 二元变量数 | 求解耗时/s | 相对Gap值/% | 操作成本/元 | 模式切换次数 | 平稳度/% |
---|---|---|---|---|---|---|---|---|
模型Ⅰ | 16523 | 14467 | 12547 | 600.0 | 3.42 | 36522116.2 | 12 | 75.06 |
模型Ⅱ | 16809 | 14467 | 12547 | 600.0 | 8.65 | 37694269.1 | 6 | 94.69 |
模型Ⅲ | 16523 | 14467 | 12547 | 164.0 | 0 | 37941169.1 | 0 | 82.46 |
模型Ⅳ | 16809 | 14467 | 12547 | 600.0 | 2.82 | 37969474.6 | 0 | 96.34 |
1 | 郑万鹏, 高小永, 朱桂瑶, 等. 原油作业过程优化的研究进展[J]. 化工学报, 2021, 72(11): 5481-5501. |
Zheng W P, Gao X Y, Zhu G Y, et al. Research progress on crude oil operation optimization[J]. CIESC Journal, 2021, 72(11): 5481-5501. | |
2 | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
Zhou H J, Zhou Y, Xu C M. Exploration of refining and chemical integration under China’s dualcarbon target[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. | |
3 | 韩彪, 尚超, 江永亨, 等. 面向对象的炼油厂全厂调度优化模型及程序框架[J]. 化工学报, 2022, 73(4): 1623-1630. |
Han B, Shang C, Jiang Y H, et al. Object-oriented refinery plant-wide scheduling optimization model and program framework[J]. CIESC Journal, 2022, 73(4): 1623-1630. | |
4 | Alam M Z, Sakib M N, Islam M, et al. Various risks and safety analysis to reduce fire in oil refinery plant[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1078(1): 012028. |
5 | Lee H, Pinto J M, Grossmann I E, et al. Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management[J]. Industrial & Engineering Chemistry Research, 1996, 35(5): 1630-1641. |
6 | Joly M, Moro L F L, Pinto J M. Planning and scheduling for petroleum refineries using mathematical programming[J]. Brazilian Journal of Chemical Engineering, 2002, 19(2): 207-228. |
7 | 焦云强, 苏宏业, 侯卫锋. 炼油厂氢气系统优化调度及其应用[J]. 化工学报, 2011, 62(8): 2101-2107. |
Jiao Y Q, Su H Y, Hou W F. Optimal scheduling of hydrogen system in refinery and its application[J]. CIESC Journal, 2011, 62(8): 2101-2107. | |
8 | Gao X Y, Shang C, Jiang Y H, et al. Refinery scheduling with varying crude: a deep belief network classification and multimodel approach[J]. AIChE Journal, 2014, 60(7): 2525-2532. |
9 | Gao X Y, Jiang Y H, Chen T, et al. Optimizing scheduling of refinery operations based on piecewise linear models[J]. Computers & Chemical Engineering, 2015, 75: 105-119. |
10 | 高小永, 江永亨, 黄德先. 基于装置级优化控制与厂级调度优化集成的过程模型方法[J]. 化工学报, 2016, 67(12): 5105-5111. |
Gao X Y, Jiang Y H, Huang D X. Process modelling based on integration of unitwide optimal process control and plantwide scheduling[J]. CIESC Journal, 2016, 67(12): 5105-5111. | |
11 | Gao X Y, Huang D X, Jiang Y H, et al. A decision tree based decomposition method for oil refinery scheduling[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1605-1612. |
12 | 施磊, 江永亨, 王凌, 等. 一种求解炼油厂连续时间调度模型的Lagrange分解算法[J]. 清华大学学报(自然科学版), 2016, 56(4): 437-447. |
Shi L, Jiang Y H, Wang L, et al. Lagrangian decomposition approach for solving continuous-time scheduling models of refinery production problems[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(4): 437-447. | |
13 | Wu N Q, Li Z W, Qu T. Energy efficiency optimization in scheduling crude oil operations of refinery based on linear programming[J]. Journal of Cleaner Production, 2017, 166: 49-57. |
14 | Hou Y, Wu N Q, Li Z W, et al. Many-objective optimization for scheduling of crude oil operations based on NSGA-Ⅲ with consideration of energy efficiency[J]. Swarm and Evolutionary Computation, 2020, 57: 100714. |
15 | 侯艳, 黄康焕, 张亿仙, 等. 原油一次加工过程的多目标调度优化[J]. 工业工程, 2020, 23(4): 131-139. |
Hou Y, Huang K H, Zhang Y X, et al. A multi-objective scheduling optimization for crude oil operations[J]. Industrial Engineering Journal, 2020, 23(4): 131-139. | |
16 | 赵浩, 荣冈, 冯毅萍. 集成炼油企业生产与能量系统的生产计划优化[J]. 化工学报, 2015, 66(1): 228-236. |
Zhao H, Rong G, Feng Y P. Integrated optimization of production and utility system planning in refining industry[J]. CIESC Journal, 2015, 66(1): 228-236. | |
17 | 张鹏飞, 王子豪, 荣冈, 等. 面向石化企业间物流集成计划优化的模型及应用[J]. 化工学报, 2016, 67(11): 4678-4688. |
Zhang P F, Wang Z H, Rong G, et al. Optimized model and application of integrated logistics planning for petrochemical enterprises[J]. CIESC Journal, 2016, 67(11): 4678-4688. | |
18 | Zhao H, Ierapetritou M G, Shah N K, et al. Integrated model of refining and petrochemical plant for enterprise-wide optimization[J]. Computers & Chemical Engineering, 2017, 97: 194-207. |
19 | Xu J L, Qu H L, Wang S J, et al. A new proactive scheduling methodology for front-end crude oil and refinery operations under uncertainty of shipping delay[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8041-8053. |
20 | Li M. Multi-periodic refinery scheduling based on generalized disjunctive programming[J]. Journal of Physics: Conference Series, 2020, 1575(1): 012195. |
21 | Duan Q Q. An MILP-NLP decomposition approach applied to a refinery scheduling problem[C]//2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2020: 411-417. |
22 | Chen Y D, Ding J L. Discrete-time scheduling model of entire refinery with multiscale operation time[C]//2021 3rd International Conference on Industrial Artificial Intelligence (IAI). IEEE, 2021: 1-6. |
23 | Ossorio-Castillo J, Pena-Brage F. Optimization of a refinery scheduling process with column generation and a quantum annealer[J]. Optimization and Engineering, 2022, 23(3): 1471-1488. |
24 | Yu L, Wang S J, Xu Q. Optimal scheduling for simultaneous refinery manufacturing and multi oil-product pipeline distribution[J]. Computers & Chemical Engineering, 2022, 157: 107613. |
25 | Chen Y D, Ding J L, Chai T Y. A knowledge transfer based scheduling algorithm for large-scale refinery production[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 869-879. |
26 | Al-Ahmari A, Kaid H, Li Z W, et al. A new MINLP continuous time formulation for scheduling optimization of oil refinery with unreliable CDUs[J]. Mathematical Problems in Engineering, 2022, 2022: 1-12. |
27 | Jiao Y Q, Su H Y, Liao Z W, et al. Modeling and multi-objective optimization of refinery hydrogen network[J]. Chinese Journal of Chemical Engineering, 2011, 19(6): 990-998. |
28 | Rabbani M, Farrokhi-Asl H, Ameli M. Solving a fuzzy multi-objective products and time planning using hybrid meta-heuristic algorithm: gas refinery case study[J]. Uncertain Supply Chain Management, 2016, 4(2): 93-106. |
29 | Liu X, Liu Y L, He X J, et al. Multi-objective nonlinear programming model for reducing octane number loss in gasoline refining process based on data mining technology[J]. Processes, 2021, 9(4): 721. |
30 | Su Y, Jin S M, Zhang X P, et al. Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm[J]. Computers & Chemical Engineering, 2020, 132: 106618. |
31 | Yang A, Wang W H, Sun S R, et al. Sustainable design and multi-objective optimization of eco-efficient extractive distillation with single and double entrainer(s) for separating the ternary azeotropic mixture tetrahydrofuran/ethanol/methanol[J]. Separation and Purification Technology, 2022, 285: 120413. |
32 | 郭庆强, 李歧强, 丁然, 等. 考虑一类过渡过程的连续过程生产调度建模[J]. 系统仿真学报, 2009, 21(22): 7009-7013. |
Guo Q Q, Li Q Q, Ding R, et al. Production scheduling modeling of continuous processes considering material switching[J]. Journal of System Simulation, 2009, 21(22): 7009-7013. | |
33 | 李明, 李歧强, 郭庆强, 等. 基于连续过程特性的炼油生产调度优化研究[J]. 计算机工程与应用, 2010, 46(21): 205-209, 234. |
Li M, Li Q Q, Guo Q Q, et al. Refinery scheduling optimization research based on continuous process characteristics[J]. Computer Engineering and Applications, 2010, 46(21): 205-209, 234. | |
34 | Shi L, Jiang Y H, Wang L, et al. Refinery production scheduling involving operational transitions of mode switching under predictive control system[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8155-8170. |
35 | Parkash S. Treating processes[M]//Refining Processes Handbook. Amsterdam: Elsevier, 2003: 210-219. |
36 | 魏传江, 王浩, 谢新民, 等. GAMS用户指南[M]. 北京: 中国水利水电出版社, 2009. |
Wei C J, Wang H, Xie X M, et al. GAMS User Guide[M]. Beijing:China Water & Power Press, 2009. | |
37 | Dunning I, Huchette J, Lubin M. JuMP: a modeling language for mathematical optimization[J]. SIAM Review, 2017, 59(2): 295-320. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[6] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[13] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[14] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[15] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||