化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2547-2563.DOI: 10.11949/0438-1157.20200105
收稿日期:
2020-02-03
修回日期:
2020-03-24
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
向中华
作者简介:
赵云(1984—),男,博士,讲师,基金资助:
Received:
2020-02-03
Revised:
2020-03-24
Online:
2020-06-05
Published:
2020-06-05
Contact:
Zhonghua XIANG
摘要:
近年来,金属有机框架(MOFs)和共价有机框架(COFs)等多孔材料因其结构单元的多样性和可设计性,不仅可以构筑具有多样化拓扑类型和化学物理性质的骨架结构,还可以精准调节结构中孔道的形状、大小和孔径分布,在气体吸附与分离、催化和化学传感等方面展现出广泛的应用价值。然而传统间歇式合成方法中相际间缓慢的微观传递过程,不利于材料的连续均一制备。近年来,微流控技术连续操作、精准可控、传递效率高和高度可重复性等特点在纳米材料制备领域体现了独有的优势。本文综述了近年来利用微流控技术制备MOF和COF材料的研究成果,重点介绍微流控强化合成过程,实现快速制备MOF和COF功能材料,以及通过微流体精准调控多孔材料微结构的研究工作。
中图分类号:
赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563.
Yun ZHAO, Zhonghua XIANG. Progress of microfluidic synthesis of metal/covalent organic frameworks[J]. CIESC Journal, 2020, 71(6): 2547-2563.
1 | Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821. |
2 | Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459. |
3 | Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?[J]. J. Am. Chem. Soc., 2012, 134(36): 15016-15021. |
4 | Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
5 | Liu J, Chen L, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chem. Soc. Rev., 2014, 43(16): 6011-6061. |
6 | Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210. |
7 | Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012, 41(18): 6010-6022. |
8 | Colson J W, Dichtel W R. Rationally synthesized two-dimensional polymers[J]. Nat. Chem., 2013, 5(6): 453-465. |
9 | Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chem. Soc. Rev., 2013, 42(2): 548-568. |
10 | Puthiaraj P, Lee Y R, Zhang S, et al. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis[J]. J. Mater. Chem. A, 2016, 4(42): 16288-16311. |
11 | Segura J L, Mancheno M J, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications[J]. Chem. Soc. Rev., 2016, 45(20): 5635-5671. |
12 | Rogge S M J, Bavykina A, Hajek J, et al. Metal-organic and covalent organic frameworks as single-site catalysts[J]. Chem. Soc. Rev., 2017, 46(11): 3134-3184. |
13 | Wang B, Côté A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453: 207. |
14 | Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1213-1214. |
15 | Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites[J]. Chem. Rev., 2012, 112(2): 933-969. |
16 | Khan N A, Jhung S H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction[J]. Coord. Chem. Rev., 2015, 285: 11-23. |
17 | Ren J, Dyosiba X, Musyoka N M, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs)[J]. Coord. Chem. Rev., 2017, 352: 187-219. |
18 | Gangu K K, Maddila S, Mukkamala S B, et al. A review on contemporary metal–organic framework materials[J]. Inorg. Chim. Acta, 2016, 446: 61-74. |
19 | Xiang Z, Cao D. Porous covalent-organic materials: synthesis, clean energy application and design[J]. J. Mater. Chem. A, 2013, 1(8): 2691-2718. |
20 | Yue Y, Qiao Z A, Fulvio P F, et al. Template-free synthesis of hierarchical porous metal–organic frameworks[J]. J. Am. Chem. Soc., 2013, 135(26): 9572-9575. |
21 | Tan Y C, Zeng H C. Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures[J]. Chem. Commun., 2016, 52(77): 11591-11594. |
22 | 林炳承, 秦建华. 微流控芯片实验室[M]. 北京: 科学出版社, 2006: 390. |
Lin B C, Qin J H. Laboratory on Microfluidic Chip[M]. Beijing: Science Press, 2006: 390. | |
23 | Abou‐Hassan A, Sandre O, Cabuil V. Microfluidics in inorganic chemistry[J]. Angew. Chem. Int. Ed., 2010, 49(36): 6268-6286. |
24 | Dummann G, Quittmann U, Gröschel L, et al. The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions[J]. Catal. Today, 2003, 79: 433-439. |
25 | Mora M F, Greer F, Stockton A M, et al. Toward total automation of microfluidics for extraterrestial in situ analysis[J]. Anal. Chem., 2011, 83(22): 8636-8641. |
26 | Marre S, Park J, Rempel J, et al. Supercritical continuous‐microflow synthesis of narrow size distribution quantum dots[J]. Adv. Mater., 2008, 20(24): 4830-4834. |
27 | Chan E M, Mathies R A, Alivisatos A P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors[J]. Nano Lett., 2003, 3(2): 199-201. |
28 | Wang H, Nakamura H, Uehara M, et al. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor[J]. Chem. Commun., 2002, 14: 1462-1463. |
29 | Hoang P H, Park H, Kim D P. Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system[J]. J. Am. Chem. Soc., 2011, 133(37): 14765-14770. |
30 | Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles[J]. Nano Lett., 2008, 8(9): 2906-2912. |
31 | Valencia P M, Pridgen E M, Rhee M, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy[J]. ACS Nano, 2013, 7(12): 10671-10680. |
32 | Hoang P H, Yoon K B, Kim D P. Synthesis of hierarchically porous zeolite a crystals with uniform particle size in a droplet microreactor[J]. RSC Adv., 2012, 2(12): 5323-5328. |
33 | Yu L, Pan Y, Wang C, et al. A two-phase segmented microfluidic technique for one-step continuous versatile preparation of zeolites[J]. Chem. Eng. J., 2013, 219: 78-85. |
34 | Zhao Y, Singh A, Jang S, et al. Continuous-flow synthesis of functional carbonaceous particles from biomass under hydrothermal carbonization[J]. J. Flow Chem., 2014, 4(4): 195-199. |
35 | Nightingale A M, deMello J C. Segmented flow reactors for nanocrystal synthesis[J]. Adv. Mater., 2013, 25(13): 1813-1821. |
36 | Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276. |
37 | Huang X, Zhang J, Chen X. [Zn(Bim)2]·(H2O)1.67: a metal-organic open-framework with sodalite topology[J]. Chin. Sci. Bull., 2003, 48(15): 1531-1534. |
38 | Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
39 | Echaide-Górriz C, Clément C, Cacho-Bailo F, et al. New strategies based on microfluidics for the synthesis of metal–organic frameworks and their membranes[J]. J. Mater. Chem. A, 2018, 6(14): 5485-5506. |
40 | Song H, Tice J D, Ismagilov R F. A microfluidic system for controlling reaction networks in time[J]. Angew. Chem., 2003, 115(7): 792-796. |
41 | Teh S Y, Lin R, Hung L H, et al. Droplet microfluidics[J]. Lab on a Chip, 2008, 8(2): 198-220. |
42 | Song H, Chen D L, Ismagilov R F. Reactions in droplets in microfluidic channels[J]. Angew. Chem. Int. Ed., 2006, 45(44): 7336-7356. |
43 | Song H, Bringer M R, Tice J D, et al. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels[J]. Appl. Phys. Lett., 2003, 83(22): 4664-4666. |
44 | Faustini M, Kim J, Jeong G Y, et al. Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets[J]. J. Am. Chem. Soc., 2013, 135(39): 14619-14626. |
45 | Farrusseng D. Metal-Organic Frameworks: Applications from Catalysis to Gas Storage[M]. Wiley, 2011. |
46 | Paseta L, Seoane B, Julve D, et al. Accelerating the controlled synthesis of metal-organic frameworks by a microfluidic approach: a nanoliter continuous reactor[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9405-9410. |
47 | 赵云, 向中华. 液滴式微流控芯片制备沸石咪唑骨架材料[J]. 科学通报, 2018, 63: 3658-3666. |
Zhao Y, Xiang Z H. Synthesis of zeolitic imidazolate frameworks in droplet microfluidic system[J]. Chinese Sci. Bull., 2018, 63: 3658-3666. | |
48 | Lee Y R, Jang M S, Cho H Y, et al. Zif-8: a comparison of synthesis methods[J]. Chem. Eng. J., 2015, 271: 276-280. |
49 | Wang Y, Li L, Dai P, et al. Missing-node directed synthesis of hierarchical pores on a zirconium metal-organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction[J]. J. Mater. Chem. A, 2017, 5(42): 22372-22379. |
50 | Polyzoidis A, Altenburg T, Schwarzer M, et al. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size[J]. Chem. Eng. J., 2016, 283: 971-977. |
51 | 盛炳琛, 李从, 刘颖雅, 等. 微通道连续合成 UiO-66 系列改性MOF材料[J]. 高等学校化学学报, 2019, 40(7): 1365-1373. |
Sheng B C, Li C, Liu Y Y, et al. Microfluidic synthesis of UiO-66 metal-organic frameworks modified with different functional groups[J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1365-1373. | |
52 | Rubio-Martinez M, Batten M P, Polyzos A, et al. Versatile, high quality and scalable continuous flow production of metal-organic frameworks[J]. Sci. Rep., 2014, 4(1): 5443. |
53 | Huo J, Brightwell M, El Hankari S, et al. A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield[J]. J. Mater. Chem. A, 2013, 1(48): 15220-15223. |
54 | Li F, Duan C, Zhang H, et al. Hierarchically porous metal-organic frameworks: green synthesis and high space-time yield[J]. Ind. Eng. Chem., 2018, 57(28): 9136-9143. |
55 | Cho H Y, Kim J, Kim S N, et al. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route[J]. Microporous Mesoporous Mater., 2013, 169: 180-184. |
56 | Lin J B, Lin R B, Cheng X N, et al. Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide[J]. Chem. Commun., 2011, 47(32): 9185-9187. |
57 | Witters D, Vergauwe N, Ameloot R, et al. Digital microfluidic high‐throughput printing of single metal‐organic framework crystals[J]. Adv. Mater., 2012, 24(10): 1316-1320. |
58 | Witters D, Vermeir S, Puers R, et al. Miniaturized layer-by-layer deposition of metal–organic framework coatings through digital microfluidics[J]. Chem. Mater., 2013, 25(7): 1021-1023. |
59 | Günther A, Jensen K F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab Chip, 2006, 6(12): 1487-1503. |
60 | Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability[J]. Nat. Chem., 2011, 3: 382. |
61 | Jeong G Y, Ricco R, Liang K, et al. Bioactive MIL-88a framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation[J]. Chem. Mater., 2015, 27(23): 7903-7909. |
62 | Wu S, Xin Z, Zhao S, et al. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules[J]. Nano Research, 2019, 12(11): 2736-2742. |
63 | Brown A J, Brunelli N A, Eum K, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
64 | Biswal B P, Bhaskar A, Banerjee R, et al. Selective interfacial synthesis of metal–organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation[J]. Nanoscale, 2015, 7(16): 7291-7298. |
65 | Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
66 | Du Y, Yang H, Whiteley J M, et al. Ionic covalent organic frameworks with spiroborate linkage[J]. Angew. Chem. Int. Ed., 2016, 55(5): 1737-1741. |
67 | El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268. |
68 | Uribe-Romo F J, Hunt J R, Furukawa H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. J. Am. Chem. Soc., 2009, 131(13): 4570-4571. |
69 | Fang Q, Zhuang Z, Gu S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nat. Commun., 2014, 5(1): 4503. |
70 | Jin E, Asada M, Xu Q, et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks[J]. Science, 2017, 357(6352): 673. |
71 | Cooper A I. Conjugated microporous polymers[J]. Adv. Mater., 2009, 21(12): 1291-1295. |
72 | Das S, Heasman P, Ben T, et al. Porous organic materials: strategic design and structure–function correlation[J]. Chem. Rev., 2017, 117(3): 1515-1563. |
73 | Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angew. Chem. Int. Ed., 2009, 48(50): 9457-9460. |
74 | Luo Y, Li B, Wang W, et al. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials[J]. Adv. Mater., 2012, 24(42): 5703-5707. |
75 | Du N, Park H B, Dal-Cin M M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy Environ. Sci., 2012, 5(6): 7306-7322. |
76 | Xiang Z, Cao D. Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules[J]. Macromol. Rapid Commun., 2012, 33(14): 1184-1190. |
77 | Xiang Z, Mercado R, Huck J M, et al. Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture[J]. J. Am. Chem. Soc., 2015, 137(41): 13301-13307. |
78 | Peng P, Zhou Z, Guo J, et al. Well-defined 2D covalent organic polymers for energy electrocatalysis[J]. ACS Energy Letters, 2017, 2(6): 1308-1314. |
79 | Peng Y, Wong W K, Hu Z, et al. Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs)[J]. Chem. Mater., 2016, 28(14): 5095-5101. |
80 | Zhao Y, Liao Z, Xiang Z. Microfluidics for synthesis and morphology control of hierarchical porous covalent organic polymer monolith[J]. Chem. Eng. Sci., 2019, 195: 801-809. |
81 | Singh V, Jang S, Vishwakarma N K, et al. Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique[J]. Npg Asia Mater., 2018, 10: e456. |
82 | Rodríguez-San-Miguel D, Abrishamkar A, Navarro J A R, et al. Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis[J]. Chem. Commun., 2016, 52(59): 9212-9215. |
[1] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[2] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[3] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[4] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[5] | 陈号, 田仪娟, 全学军, 蒋子文, 李纲. 铬铁矿在HCl-HF体系中的分解行为[J]. 化工学报, 2023, 74(3): 1161-1174. |
[6] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[7] | 郎雪梅, 姚柳眉, 樊栓狮, 李刚, 王燕鸿. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860. |
[8] | 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607. |
[9] | 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513. |
[10] | 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551. |
[11] | 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467. |
[12] | 王之豪, 宋欣, 殷亚然, 张先明. 微流控纺丝中凝胶速率对螺旋纤维形貌的调控机制[J]. 化工学报, 2022, 73(11): 5158-5166. |
[13] | 马文峻, 陈卓, 凌斯达, 张经纬, 徐建鸿. 3D打印微流控通道快速可控制备核壳微纤维[J]. 化工学报, 2022, 73(1): 434-440. |
[14] | 湛伟, 刘西洋, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内液液两相流流型及其转变机理[J]. 化工学报, 2022, 73(1): 184-193. |
[15] | 周东一, 肖湘华, 肖飚, 刘益才. 脂肪类复合相变储能材料中脂肪酸最佳质量含量的确定方法[J]. 化工学报, 2021, 72(S1): 560-566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||