化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2543-2551.doi: 10.11949/0438-1157.20220260

• 流体力学与传递现象 • 上一篇    下一篇

基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析

曹健(),叶南南,蒋管聪,覃瑶,王士博,朱家华,陆小华()   

  1. 南京工业大学材料化学工程国家重点实验室,江苏 南京 211816
  • 收稿日期:2022-03-01 修回日期:2022-05-02 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 陆小华 E-mail:caojian@njtech.edu.cn;xhlu@njtech.edu.cn
  • 作者简介:曹健(1998—),男,博士研究生,caojian@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(91934302)

Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry

Jian CAO(),Nannan YE,Guancong JIANG,Yao QIN,Shibo WANG,Jiahua ZHU,Xiaohua LU()   

  1. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2022-03-01 Revised:2022-05-02 Published:2022-06-05 Online:2022-06-30
  • Contact: Xiaohua LU E-mail:caojian@njtech.edu.cn;xhlu@njtech.edu.cn

摘要:

多孔材料作为催化剂对现代化学工业起到重要推动作用,但其纳米受限孔道造成的界面传递问题不容忽视。直接法合成双氧水(H2O2)过程中,揭示H2O2脱附过程传递与反应竞争博弈的介尺度机制是提高产率的关键。线性非平衡热力学为解耦界面扩散及反应提供了统一框架,但缺少合适通量测定方法。因此,本文设计多孔碳与H2O2相互作用的微量热实验,结合分子模拟及孔结构表征实验揭示多孔碳材料的界面传递结构,实现了非平衡热力学的定量传质阻力分析,进一步获取了表界面浓度场的动态变化。研究结果表明:微量热法是定量解耦并揭示扩散-反应机制的有效线性非平衡热力学阻力分析方法;介孔结构、生物骨架结构及担载1%(质量) Pd元素均能增强H2O2在多孔碳中的传质通量,但实现超高通量需要扩散与反应阻力的匹配;非平衡热力学阻力解耦方法是揭示多相反应过程介尺度机制的重要定量描述方法,有望为过程的调控及优化提供理论依据。

关键词: 多孔材料, 界面传递, 介尺度, 非平衡热力学, 扩散, 反应, 微量热, 传质阻力

Abstract:

Porous materials play an important role in modern chemical industry, but the interfacial transfer phenomena caused by their nano-confinement pores cannot be ignored. For direct oxidation synthesizing hydrogen peroxide (H2O2), revealing the mesoscale relationship between mass transfer of desorbing H2O2 and reaction is the key to improving the yield. Linearized non-equilibrium thermodynamics has provided a unified framework for decoupling the interfacial diffusion and reaction, but in this case, a suitable method of measuring mass transfer flux was lacked. Therefore, the microcalorimetry experiments measuring the heat effect of interaction between porous carbons and H2O2 were designed in this paper. With the help of molecular simulation and pore characterization, the structures for interfacial transfer were revealed, and the quantitative mass transfer resistance analysis of non-equilibrium thermodynamics was realized, then the dynamic change of H2O2 concentration was obtained. The results showed that microcalorimetry is an effective linearized non-equilibrium thermodynamic resistance analysis method. Mesoporous structure, biological skeleton texture and supporting 1%(mass) palladium can enhance the mass transfer flux of H2O2 in porous carbon, but the realization of ultra-high flux requires the matching of diffusion and reaction resistance. The resistance decoupling of non-equilibrium thermodynamics is an important quantitative description method to reveal the mesoscale mechanism of heterogeneous reaction process, which is expected to provide a theoretical basis for the regulation and optimization of the process.

Key words: porous material, interfacial transfer, mesoscale, non-equilibrium thermodynamics, diffusion, reaction, microcalorimetry, mass transfer resistance

中图分类号: 

  • O 414.19

表1

本实验所用试剂及材料"

化学品CAS号纯度(质量分数)供应商
H2O27722-84-1≥30%上海凌峰化学试剂有限公司
正丙醇71-23-899.7%Aladdin
氯化钾7758-02-3≥99.995%Aladdin
商业碳Cabot美国卡博特公司 (型号:Norit)
生物骨架碳BioMC实验室自制
1% Pd/BioMC实验室自制
1% Pd/Cabot实验室自制
超纯水实验室超纯水机自制 (型号:PLUS-E2-10TJ)

图1

线性非平衡热力学传质模型"

图2

多孔碳反应/吸附H2O2过程示意图"

图3

四种多孔碳材料与H2O2相互作用的微量热实验结果"

表2

多孔碳材料的BET表征结果"

多孔碳材料

比表面积

ap/ (m2/g)

孔容Vg /(m3/g)
介孔微孔
Cabot7050.414×10-60.241×10-6
BioMC8631.561×10-60.160×10-6
1% Pd/Cabot7960.424×10-60.287×10-6
1% Pd/BioMC9271.619×10-60.181×10-6

图4

H2O2的传质通量"

图5

四种多孔碳材料的总传质阻力"

表3

传质系数求解结果"

传质系数数值
ks,null/ (mg/(m2·s))1.516×10-5
ks,pd/ (mg/(m2·s))3.988×10-4
kd,meso/ (mg/(m3·s))2.038×105
kd,micro/ (mg/(m3·s))8.318×104

图6

界面处H2O2浓度的时空变化"

表4

四种多孔碳的传质阻力分布"

多孔碳材料扩散阻力 1kdA/(s/mg)

反应阻力 1ksap/

(s/mg)

总阻力 1KA/

(s/mg)

介孔阻力

1kd,mesoVmeso

微孔阻力

1kd,microVmicro

扩散总阻力
1%(质量)Pd/BioMC10122219790187
1%(质量)Pd/Cabot388140617941051899
BioMC105252310034663566
Cabot3981674207243236395
1 Ding L, Wei Y Y, Li L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9: 155.
2 Lin R B, Li L B, Zhou H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133.
3 Ding Y, Zhao Y, Li Y T, et al. A high-performance all-metallocene-based, non-aqueous redox flow battery[J]. Energy & Environmental Science, 2017, 10(2): 491-497.
4 Arntz D. Trends in the chemical industry[J]. Catalysis Today, 1993, 18(2): 173-198.
5 Chng L L, Erathodiyil N, Ying J Y. Nanostructured catalysts for organic transformations[J]. Accounts of Chemical Research, 2013, 46(8): 1825-1837.
6 Fujimori T, Morelos-Gómez A, Zhu Z, et al. Conducting linear chains of sulphur inside carbon nanotubes[J]. Nature Communications, 2013, 4: 2162.
7 Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
8 Li W, Wu Z X, Wang J X, et al. A perspective on mesoporous TiO2 materials[J]. Chemistry of Materials, 2014, 26(1): 287-298.
9 Pan X L, Fan Z L, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507-511.
10 Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530.
11 Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure[J]. Journal of the American Chemical Society, 2005, 127(39): 13508-13509.
12 Wu N H, Ji X Y, An R, et al. Generalized Gibbs free energy of confined nanoparticles[J]. AIChE Journal, 2017, 63(10): 4595-4603.
13 Tu R, Chen S Y, Cao W, et al. The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2(B)/anatase supported Pd catalyst[J]. Catalysis Communications, 2017, 89: 69-72.
14 Tu R, Li L C, Zhang S Y, et al. Carbon-modified mesoporous anatase/TiO2(B) whisker for enhanced activity in direct synthesis of hydrogen peroxide by palladium[J]. Catalysts, 2017, 7(6): 175.
15 Wu N H, Ji X Y, Li L C, et al. Mesoscience in supported nano-metal catalysts based on molecular thermodynamic modeling: a mini review and perspective[J]. Chemical Engineering Science, 2021, 229: 116164.
16 Demirel Y, Sandler S I. Nonequilibrium thermodynamics in engineering and science[J]. The Journal of Physical Chemistry B, 2004, 108(1): 31-43.
17 Prigogine I. Moderation et transformation irreversible des systemes ouverts[J]. Bull. Cl. Sci. Acad. R Belg., 1945, 31: 600-606.
18 陆小华, 吉远辉, 刘洪来. 非平衡热力学在界面传递过程中的应用[J]. 中国科学: 化学, 2011, 41(9): 1540-1547.
Lu X H, Ji Y H, Liu H L. Non-equilibrium thermodynamics analysis and its application for interfacial mass transfer[J]. Scientia Sinica (Chimica), 2011, 41(9): 1540-1547.
19 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(S1): 223-232.
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(S1): 223-232.
20 Liu C, Feng X, Ji X Y, et al. The study of dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions with a statistical rate theory[J]. Chinese Journal of Chemical Engineering, 2004, 12(1): 128-130.
21 陆小华, 吉远辉, 冯新, 等. 离子液体捕集二氧化碳非平衡热力学研究方法学探讨[J]. 中国科学: 化学, 2012, 42(3): 245-259.
Lu X H, Ji Y H, Feng X, et al. Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids[J]. Scientia Sinica (Chimica), 2012, 42(3): 245-259.
22 Xie W L, Ji X Y, Feng X, et al. Mass transfer rate enhancement for CO2 separation by ionic liquids: effect of film thickness[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 366-372.
23 Xie W L, Ji X Y, Feng X, et al. Mass-transfer rate enhancement for CO2 separation by ionic liquids: theoretical study on the mechanism[J]. AIChE Journal, 2015, 61(12): 4437-4444.
24 Ji X Y, Chen D L, Wei T, et al. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode[J]. Chemical Engineering Science, 2001, 56(24): 7017-7024.
25 Ostonen A, Bervas J, Uusi-Kyyny P, et al. Experimental and theoretical thermodynamic study of distillable ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate[J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10445-10454.
26 谢文龙. 面向分离CO2的离子液体膜中纳微界面反应传递机制的研究[D]. 南京: 南京工业大学, 2016.
Xie W L. Study on reaction transfer mechanism of nano micro interface in ionic liquid membrane for CO2 separation[D]. Nanjing: Nanjing University of Technology, 2016.
27 Blin J L, Léonard A, Yuan Z Y, et al. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies[J]. Angewandte Chemie International Edition, 2003, 42(25): 2872-2875.
28 Sun M H, Huang S Z, Chen L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563.
29 Zheng X F, Shen G F, Wang C, et al. Bio-inspired Murray materials for mass transfer and activity[J]. Nature Communications, 2017, 8: 14921.
30 Wang S S, Chen J J, Li L C, et al. Mass transfer behavior of methane in porous carbon materials[J]. AIChE Journal, 2022, 68(3): e17521.
31 Cao W, Tow G M, Lu L H, et al. Diffusion of CO2/CH4 confined in narrow carbon nanotube bundles[J]. Molecular Physics, 2016, 114(16/17): 2530-2540.
32 Chen L, Ji T, Yuan R X, et al. Unveiling mesopore evolution in carbonized wood: interfacial separation, migration, and degradation of lignin phase[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2489-2495.
[1] 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227.
[2] 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156.
[3] 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169.
[4] 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196.
[5] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[6] 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066.
[7] 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835.
[8] 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702.
[9] 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586.
[10] 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312.
[11] 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398.
[12] 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160.
[13] 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967.
[14] 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783.
[15] 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!