化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2543-2551.DOI: 10.11949/0438-1157.20220260
收稿日期:
2022-03-01
修回日期:
2022-05-02
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
陆小华
作者简介:
曹健(1998—),男,博士研究生,基金资助:
Jian CAO(),Nannan YE,Guancong JIANG,Yao QIN,Shibo WANG,Jiahua ZHU,Xiaohua LU(
)
Received:
2022-03-01
Revised:
2022-05-02
Online:
2022-06-05
Published:
2022-06-30
Contact:
Xiaohua LU
摘要:
多孔材料作为催化剂对现代化学工业起到重要推动作用,但其纳米受限孔道造成的界面传递问题不容忽视。直接法合成双氧水(H2O2)过程中,揭示H2O2脱附过程传递与反应竞争博弈的介尺度机制是提高产率的关键。线性非平衡热力学为解耦界面扩散及反应提供了统一框架,但缺少合适通量测定方法。因此,本文设计多孔碳与H2O2相互作用的微量热实验,结合分子模拟及孔结构表征实验揭示多孔碳材料的界面传递结构,实现了非平衡热力学的定量传质阻力分析,进一步获取了表界面浓度场的动态变化。研究结果表明:微量热法是定量解耦并揭示扩散-反应机制的有效线性非平衡热力学阻力分析方法;介孔结构、生物骨架结构及担载1%(质量) Pd元素均能增强H2O2在多孔碳中的传质通量,但实现超高通量需要扩散与反应阻力的匹配;非平衡热力学阻力解耦方法是揭示多相反应过程介尺度机制的重要定量描述方法,有望为过程的调控及优化提供理论依据。
中图分类号:
曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551.
Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry[J]. CIESC Journal, 2022, 73(6): 2543-2551.
化学品 | CAS号 | 纯度(质量分数) | 供应商 |
---|---|---|---|
H2O2 | 7722-84-1 | ≥30% | 上海凌峰化学试剂有限公司 |
正丙醇 | 71-23-8 | 99.7% | Aladdin |
氯化钾 | 7758-02-3 | ≥99.995% | Aladdin |
商业碳Cabot | — | — | 美国卡博特公司 (型号:Norit) |
生物骨架碳BioMC | — | — | 实验室自制 |
1% Pd/BioMC | — | — | 实验室自制 |
1% Pd/Cabot | — | — | 实验室自制 |
超纯水 | — | — | 实验室超纯水机自制 (型号:PLUS-E2-10TJ) |
表1 本实验所用试剂及材料
Table1 Reagents and materials used in this experiment
化学品 | CAS号 | 纯度(质量分数) | 供应商 |
---|---|---|---|
H2O2 | 7722-84-1 | ≥30% | 上海凌峰化学试剂有限公司 |
正丙醇 | 71-23-8 | 99.7% | Aladdin |
氯化钾 | 7758-02-3 | ≥99.995% | Aladdin |
商业碳Cabot | — | — | 美国卡博特公司 (型号:Norit) |
生物骨架碳BioMC | — | — | 实验室自制 |
1% Pd/BioMC | — | — | 实验室自制 |
1% Pd/Cabot | — | — | 实验室自制 |
超纯水 | — | — | 实验室超纯水机自制 (型号:PLUS-E2-10TJ) |
多孔碳材料 | 比表面积 ap/ (m2/g) | 孔容Vg /(m3/g) | |
---|---|---|---|
介孔 | 微孔 | ||
Cabot | 705 | 0.414×10-6 | 0.241×10-6 |
BioMC | 863 | 1.561×10-6 | 0.160×10-6 |
1% Pd/Cabot | 796 | 0.424×10-6 | 0.287×10-6 |
1% Pd/BioMC | 927 | 1.619×10-6 | 0.181×10-6 |
表2 多孔碳材料的BET表征结果
Table 2 The BET characterization of porous carbon materials
多孔碳材料 | 比表面积 ap/ (m2/g) | 孔容Vg /(m3/g) | |
---|---|---|---|
介孔 | 微孔 | ||
Cabot | 705 | 0.414×10-6 | 0.241×10-6 |
BioMC | 863 | 1.561×10-6 | 0.160×10-6 |
1% Pd/Cabot | 796 | 0.424×10-6 | 0.287×10-6 |
1% Pd/BioMC | 927 | 1.619×10-6 | 0.181×10-6 |
传质系数 | 数值 |
---|---|
ks,null/ (mg/(m2·s)) | 1.516×10-5 |
ks,pd/ (mg/(m2·s)) | 3.988×10-4 |
kd,meso/ (mg/(m3·s)) | 2.038×105 |
kd,micro/ (mg/(m3·s)) | 8.318×104 |
表3 传质系数求解结果
Table 3 Results of mass transfer coefficients
传质系数 | 数值 |
---|---|
ks,null/ (mg/(m2·s)) | 1.516×10-5 |
ks,pd/ (mg/(m2·s)) | 3.988×10-4 |
kd,meso/ (mg/(m3·s)) | 2.038×105 |
kd,micro/ (mg/(m3·s)) | 8.318×104 |
多孔碳材料 | 扩散阻力 | 反应阻力 (s/mg) | 总阻力 (s/mg) | ||
---|---|---|---|---|---|
介孔阻力 | 微孔阻力 | 扩散总阻力 | |||
1%(质量)Pd/BioMC | 101 | 2221 | 97 | 90 | 187 |
1%(质量)Pd/Cabot | 388 | 1406 | 1794 | 105 | 1899 |
BioMC | 105 | 2523 | 100 | 3466 | 3566 |
Cabot | 398 | 1674 | 2072 | 4323 | 6395 |
表4 四种多孔碳的传质阻力分布
Table 4 Mass transfer resistance distribution of four porous carbons
多孔碳材料 | 扩散阻力 | 反应阻力 (s/mg) | 总阻力 (s/mg) | ||
---|---|---|---|---|---|
介孔阻力 | 微孔阻力 | 扩散总阻力 | |||
1%(质量)Pd/BioMC | 101 | 2221 | 97 | 90 | 187 |
1%(质量)Pd/Cabot | 388 | 1406 | 1794 | 105 | 1899 |
BioMC | 105 | 2523 | 100 | 3466 | 3566 |
Cabot | 398 | 1674 | 2072 | 4323 | 6395 |
1 | Ding L, Wei Y Y, Li L B, et al. MXene molecular sieving membranes for highly efficient gas separation[J]. Nature Communications, 2018, 9: 155. |
2 | Lin R B, Li L B, Zhou H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. |
3 | Ding Y, Zhao Y, Li Y T, et al. A high-performance all-metallocene-based, non-aqueous redox flow battery[J]. Energy & Environmental Science, 2017, 10(2): 491-497. |
4 | Arntz D. Trends in the chemical industry[J]. Catalysis Today, 1993, 18(2): 173-198. |
5 | Chng L L, Erathodiyil N, Ying J Y. Nanostructured catalysts for organic transformations[J]. Accounts of Chemical Research, 2013, 46(8): 1825-1837. |
6 | Fujimori T, Morelos-Gómez A, Zhu Z, et al. Conducting linear chains of sulphur inside carbon nanotubes[J]. Nature Communications, 2013, 4: 2162. |
7 | Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
8 | Li W, Wu Z X, Wang J X, et al. A perspective on mesoporous TiO2 materials[J]. Chemistry of Materials, 2014, 26(1): 287-298. |
9 | Pan X L, Fan Z L, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507-511. |
10 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
11 | Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure[J]. Journal of the American Chemical Society, 2005, 127(39): 13508-13509. |
12 | Wu N H, Ji X Y, An R, et al. Generalized Gibbs free energy of confined nanoparticles[J]. AIChE Journal, 2017, 63(10): 4595-4603. |
13 | Tu R, Chen S Y, Cao W, et al. The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2(B)/anatase supported Pd catalyst[J]. Catalysis Communications, 2017, 89: 69-72. |
14 | Tu R, Li L C, Zhang S Y, et al. Carbon-modified mesoporous anatase/TiO2(B) whisker for enhanced activity in direct synthesis of hydrogen peroxide by palladium[J]. Catalysts, 2017, 7(6): 175. |
15 | Wu N H, Ji X Y, Li L C, et al. Mesoscience in supported nano-metal catalysts based on molecular thermodynamic modeling: a mini review and perspective[J]. Chemical Engineering Science, 2021, 229: 116164. |
16 | Demirel Y, Sandler S I. Nonequilibrium thermodynamics in engineering and science[J]. The Journal of Physical Chemistry B, 2004, 108(1): 31-43. |
17 | Prigogine I. Moderation et transformation irreversible des systemes ouverts[J]. Bull. Cl. Sci. Acad. R Belg., 1945, 31: 600-606. |
18 | 陆小华, 吉远辉, 刘洪来. 非平衡热力学在界面传递过程中的应用[J]. 中国科学: 化学, 2011, 41(9): 1540-1547. |
Lu X H, Ji Y H, Liu H L. Non-equilibrium thermodynamics analysis and its application for interfacial mass transfer[J]. Scientia Sinica (Chimica), 2011, 41(9): 1540-1547. | |
19 | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(S1): 223-232. |
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(S1): 223-232. | |
20 | Liu C, Feng X, Ji X Y, et al. The study of dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions with a statistical rate theory[J]. Chinese Journal of Chemical Engineering, 2004, 12(1): 128-130. |
21 | 陆小华, 吉远辉, 冯新, 等. 离子液体捕集二氧化碳非平衡热力学研究方法学探讨[J]. 中国科学: 化学, 2012, 42(3): 245-259. |
Lu X H, Ji Y H, Feng X, et al. Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids[J]. Scientia Sinica (Chimica), 2012, 42(3): 245-259. | |
22 | Xie W L, Ji X Y, Feng X, et al. Mass transfer rate enhancement for CO2 separation by ionic liquids: effect of film thickness[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 366-372. |
23 | Xie W L, Ji X Y, Feng X, et al. Mass-transfer rate enhancement for CO2 separation by ionic liquids: theoretical study on the mechanism[J]. AIChE Journal, 2015, 61(12): 4437-4444. |
24 | Ji X Y, Chen D L, Wei T, et al. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode[J]. Chemical Engineering Science, 2001, 56(24): 7017-7024. |
25 | Ostonen A, Bervas J, Uusi-Kyyny P, et al. Experimental and theoretical thermodynamic study of distillable ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate[J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10445-10454. |
26 | 谢文龙. 面向分离CO2的离子液体膜中纳微界面反应传递机制的研究[D]. 南京: 南京工业大学, 2016. |
Xie W L. Study on reaction transfer mechanism of nano micro interface in ionic liquid membrane for CO2 separation[D]. Nanjing: Nanjing University of Technology, 2016. | |
27 | Blin J L, Léonard A, Yuan Z Y, et al. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies[J]. Angewandte Chemie International Edition, 2003, 42(25): 2872-2875. |
28 | Sun M H, Huang S Z, Chen L H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563. |
29 | Zheng X F, Shen G F, Wang C, et al. Bio-inspired Murray materials for mass transfer and activity[J]. Nature Communications, 2017, 8: 14921. |
30 | Wang S S, Chen J J, Li L C, et al. Mass transfer behavior of methane in porous carbon materials[J]. AIChE Journal, 2022, 68(3): e17521. |
31 | Cao W, Tow G M, Lu L H, et al. Diffusion of CO2/CH4 confined in narrow carbon nanotube bundles[J]. Molecular Physics, 2016, 114(16/17): 2530-2540. |
32 | Chen L, Ji T, Yuan R X, et al. Unveiling mesopore evolution in carbonized wood: interfacial separation, migration, and degradation of lignin phase[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2489-2495. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[8] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[9] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[10] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[11] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[12] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[13] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[14] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[15] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 369
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||