化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2496-2513.doi: 10.11949/0438-1157.20220180

• 综述与专论 • 上一篇    下一篇

提升管进料区内气体射流流动行为的调控及工业应用

刘梦溪1,2(),范怡平1,2,闫子涵1,2,姚秀颖1,2,卢春喜1,2()   

  1. 1.中国石油大学(北京)重质油国家重点实验室,北京 102249
    2.物质绿色创造与制造海河实验室,天津 300192
  • 收稿日期:2022-02-09 修回日期:2022-04-25 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 卢春喜 E-mail:mengxiliu@sina.com;lcx725@sina.com
  • 作者简介:刘梦溪(1973—),男,博士,教授,mengxiliu@sina.com
  • 基金资助:
    国家自然科学基金项目(91834303);国家重点研发计划项目(2021YFA1501304);物质绿色创造与制造海河实验室项目

Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser

Mengxi LIU1,2(),Yiping FAN1,2,Zihan YAN1,2,Xiuying YAO1,2,Chunxi LU1,2()   

  1. 1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
    2.Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
  • Received:2022-02-09 Revised:2022-04-25 Published:2022-06-05 Online:2022-06-30
  • Contact: Chunxi LU E-mail:mengxiliu@sina.com;lcx725@sina.com

摘要:

射流促使提升管反应器中产生了重要的介尺度流动结构,对产品的收率、选择性以及提升管内壁的结焦都有重要的影响。对近年来提升管进料区内射流流动行为及调控的研究进行了回顾。二次流是造成传统进料区原料-催化剂浓度不匹配的主要原因。基于Kutta-Joukowski升力定律,从理论上介绍了二次流形成的机理以及主流、二次流轨迹的预测模型,给出了油剂逆流接触这一强化手段。针对常规催化裂化、吡啶碱合成等工艺,分别介绍了油剂逆流接触、双层喷嘴等不同的进料区流场强化方法、实验室研究结果和工业应用结果。结果显示,采用进料区强化方法后可以提高目标产品的收率并显著缓解反应器内部的结焦现象。

关键词: 提升管, 多相流, 介尺度, 射流, 过程强化

Abstract:

The jet flow induces an important mesoscale flow structure in the riser reactor, which has an important impact on the product yield, selectivity and coking on the inner wall of the riser. Research on gas jet hydrodynamics in a feedstock injection zone of a riser and the intensification strategy was reviewed in this paper. The secondary flow is the main reason for the unmatching concentration of feedstock and catalyst in a feedstock injection zone with traditional and upward jet injection scheme. Based on Kutta-Joukowski theorem, the formation mechanism of the secondary flow, the trajectories of the main flow and secondary flow, as well as the intensification strategy of feedstock-catalyst countercurrent contact were introduced and analyzed theoretically. Focusing on RFCC and pyridine synthesis processes, work associated with laboratory findings and commercialized units test were introduced in terms of intensification methods such as oil-catalyst countercurrent contact and dual layer nozzles. The results show that product yields increase and the coking inside the reactor is significantly relieved after the strategy was used.

Key words: riser, multiphase flow, mesoscale, jet, process intensification

中图分类号: 

  • TQ 052.5
1 Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938.
2 Pinheiro C I C, Fernandes J L, Domingues L, et al. Fluid catalytic cracking (FCC) process modeling, simulation, and control[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 1-29.
3 Lu C X, Zhang Y M, Shi M X. A historic review on R&D of China's FCC riser termination device technologies[J]. International Journal of Chemical Reactor Engineering, 2013, 11(1): 225-242.
4 Sasic S, Leckner B, Johnsson F. Time-frequency investigation of different modes of bubble flow in a gas-solid fluidized bed[J]. Chemical Engineering Journal, 2006, 121(1): 27-35.
5 Chew J W, Parker D M, Cocco R A, et al. Cluster characteristics of continuous size distributions and binary mixtures of Group B particles in dilute riser flow[J]. Chemical Engineering Journal, 2011, 178: 348-358.
6 Xu J, Zhu J X. Visualization of particle aggregation and effects of particle properties on cluster characteristics in a CFB riser[J]. Chemical Engineering Journal, 2011, 168(1): 376-389.
7 Liu M X, Shen Z Y, Yang L J, et al. Microscale two-phase flow structure in a modified gas-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13475-13487.
8 Niu L, Huang Y H, Liu M X, et al. Identification of mesoscale flow in a bubbling and turbulent gas-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8456-8471.
9 Niu L, Huang Y H, Liu M Y, et al. Modified force balance model of estimating agglomerate sizes in a gas-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8472-8483.
10 Wang S, Lu H L, Liu G D, et al. Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds[J]. Powder Technology, 2011, 208(1): 98-110.
11 Wang W, Lu B N, Zhang N, et al. A review of multiscale CFD for gas-solid CFB modeling[J]. International Journal of Multiphase Flow, 2010, 36(2):109-118.
12 Ge W, Chang Q, Li C X, et al. Multiscale structures in particle-fluid systems: characterization, modeling, and simulation[J]. Chemical Engineering Science, 2019, 198: 198-223.
13 Li J H, Kwauk M. Particle-fluid Two-phase Flow: The Energy-minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press,1994.
14 Sundaresan S. Modeling the hydrodynamics of multiphase flow reactors: current status and challenges[J]. AIChE Journal, 2000, 46(6): 1102–1105.
15 Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2019, 215: 115428.
16 Fan Y P, Ye S, Chao Z X, et al. Gas-solid two‐phase flow in FCC riser[J]. AIChE Journal, 2002, 48(9): 1869-1887.
17 Yan C Y, Fan Y P, Lu C X, et al. Solids mixing in a fluidized bed riser[J]. Powder Technology, 2009, 193(1): 110-119.
18 卢春喜, 刘梦溪, 范怡平. 催化裂化反应系统关键装备技术[M]. 中国石化出版社, 北京, 2019.
Lu C X, Liu M X, Fan Y P. Key Equipment Technology of Reaction System of RFCC Unit [M]. Beijing: China Petrochemical Press, 2019
19 高金森, 徐春明, 林世雄,等. 催化裂化提升管反应器气液固3相流动反应的数值模拟[J]. 石油学报(石油加工), 1999, 15(5): 28-37
Gao J S, Xu C M, Lin S X, et al. Numerical simulation on the gas liquid solid three-phase flow reaction in FCC riser reactors[J]. ACTA Petrolei Sinica (Petroleum Processing Section), 1999, 15(5): 28-37.
20 Chen S, Fan Y P, Yan Z H, et al. CFD optimization of feedstock injection angle in a FCC riser[J]. Chemical Engineering Science, 2016, 153: 58-74.
21 Wang W, Yan Z, Fan Y, et al. CFD simulation of gas-solid two-phase flow and mixing in a FCC riser with feedstock injection[J]. Powder Technol.: An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2016, 287: 29-42.
22 Nayak S V, Joshi S L, Ranade V V. Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J]. Chemical Engineering Science, 2005, 60(22): 6049-6066.
23 范怡平, 叶盛, 卢春喜, 等. 提升管反应器进料混合段内气固两相流动特性(Ⅱ): 理论分析[J]. 化工学报, 2002, 53(10): 1009-1014.
Fan Y P, Ye S, Lu C X, et al. Gas-solid two-phase flow in feed injection zone of FCC riser reactors (Ⅱ): Analytical research[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(10): 1009-1014.
24 范怡平, 杨志义, 许栋五, 等. 催化裂化提升管进料段内油剂两相流动混合的优化及工业应用[J]. 过程工程学报, 2006, 6(z2): 390-393.
Fan Y P, Yang Z Y, Xu D W, et al. Optimization on the gas-solid two-phase flow in the feedstock injection-mixing zone of FCC riser and industrial application[J]. The Chinese Journal of Process Engineering, 2006, 6(z2): 390-393.
25 范怡平, 卢春喜. 催化裂化提升管进料段内多相流动及其结构优化[J]. 化工学报, 2018, 69(1): 249-258.
Fan Y P, Lu C X. Multiphase flow characteristics and structural optimization in feed injection zone of FCC riser[J]. CIESC Journal, 2018, 69(1): 249-258.
26 Hedrick B W, Palmas P. Process for contacting high contaminated feedstocks with catalyst in an FCC unit: US8062506[P]. 2011-11-22.
27 Chen Y M. Feed nozzle assembly: US7992805[P]. 2011-08-09.
28 Steffens T R, Challis S D. FCC feed injector: US5173175[P]. 1992-12-22.
29 陈遒北, 范怡平, 吴朝能, 等. 重油催化裂化高效雾化进料喷嘴: 1648209[P].2004-01-31.
Chen Q B, Fan Y P, Wu C N, et al. High efficiency atomizing material feeding nozzle for heavy oil catalytic cracking: 1648209[P]. 2004-01-31.
30 郑茂军, 侯栓弟, 钟孝湘, 等. 两种提升管反应器中颗粒速度分布的测定[J]. 石油炼制与化工, 2000, 31(2): 45-51.
Zheng M J, Hou S D, Zhong X X, et al. Determining the particle velocity distribution in FCC riser with different structure[J]. Petroleum Processing and Petrochemicals, 2000, 31(2): 45-51.
31 钟孝湘, 侯拴弟, 郑茂军, 等. 抗滑落提升管反应器流体力学性能的研究[J]. 石油炼制与化工, 2000, 31(7): 45-50.
Zhong X X, Hou S D, Zheng M J, et al. Study on flow hydrodynamics of anti-down-slipping riser[J]. Petroleum Processing and Petrochemicals, 2000, 31(7): 45-50.
32 Maroy P, Loutaty R, Patureaux T. Process and apparatus for contacting a hydrocarbon feedstock with hot solid particles in a tubular reactor with a rising fluidized bed: US5348644[P]. 1994-09-20.
33 毛羽, 高金森, 徐春明, 等. 提升管反应器: 101270298A[P]. 2008-09-24.
Mao Y, Gao J S, Xu C M, et al. Riser reactor: 101270298A[P]. 2008-09-24.
34 范怡平, 许栋五, 赵胜利. 催化裂化提升管的进料混合段结构: 201940218U[P]. 2011-08-24.
Fan Y P, Xu D W, Zhao S L. Structure of feeding and mixing section of catalytic cracking riser: 201940218U[P]. 2011-08-24.
35 卢春喜, 范怡平, 陈昇,等. 促进原料油与催化剂混合的催化裂化提升管进料段结构: 203890297U [P]. 2014-10-22.
Lu C X, Fan Y P, Chen S, et al. Structure of feeding section of catalytic cracking riser improving mixing of crude oil and catalyst: 203890297U [P]. 2014-10-22.
36 范怡平, 许栋五. 一种抑制催化剂返混的催化裂化提升管进料混合段结构: 102120165A [P]. 2010-07-13.
Fan Y P, Xu D W. An anti catalyst backmixing feed injection/mixing zone of RFCC riser: 102120165A [P]. 2010-07-13.
37 边京, 赵凤静, 范怡平,等. 逆流变径耦合催化裂化提升管进料段内固含率及颗粒速度的径向分布[J]. 石油学报(石油加工), 2018, 34(6):1117-1126.
Bian J, Zhao F J, Fan Y P, et al. Radial distribution of solid holdup and particle velocity in countercurrent-variable diameter feedstock injection zone of an FCC riser [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6): 1117-1126 .
38 Fan Y P, Cai F P, Shi M X. Two types of novel feedstock injection structures of the FCC riser reactor[J]. Chinese Journal of Chemical Engineering, 2004, 12(1): 48-54. .
39 Marzocchella A, Arena U. Hydrodynamics of a circulating fluidized bed operated with different secondary air injection devices[J]. Powder Technology, 1996, 87(3): 185-191.
40 王洪斌, 徐春明. 渣油催化裂化提升管反应器性能的数值模拟: 喷嘴射流速度与角度对流动反应的影响[J]. 化工学报, 1999, 50(2): 200-207.
Wang H B, Xu C M. Numerical simulation of the influence of injecting velocity and angle on flow and reaction in RFCC riser reactor[J]. Journal of Chemical Industry and Engineering (China), 1999, 50(2): 200-207.
41 Li J, Luo Z H, Lan X Y, et al. Numerical simulation of the turbulent gas-solid flow and reaction in a polydisperse FCC riser reactor[J]. Powder Technology, 2013, 237: 569-580.
42 Li J, Fan Y P, Lu C X, et al. Numerical simulation of influence of feed injection on hydrodynamic behavior and catalytic cracking reactions in a FCC riser under reactive conditions[J]. Industrial & Engineering Chemistry Research, 2013, 52(32): 11084-11098.
43 Wang X S, Gibbs B M. Hydrodynamics of a circulating fluidized bed with secondary air injection[C]// Circulating Fluidized Bed Technology Ⅲ. Toronto, Canada: Pergamon Press, 1991: 225-230.
44 Mauleon J L, Sigaud J B. Process for the catalytic cracking of hydrocarbons in a fluidized bed and their applications: US4883583[P]. 1989-11-28.
45 范怡平, 蔡飞鹏, 时铭显, 等. 催化裂化提升管进料段内气、固两相混合流动特性及其改进[J]. 石油学报(石油加工), 2004, 20(5): 13-19.
Fan Y P, Cai F P, Shi M X, et al. The gas-solid two-phase flow and the improvement in the feedstock injection-mixing zone of FCC riser[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2004, 20(5): 13-19.
46 范怡平, 时铭显, 叶盛 等. 多股射流在提升管内的扩散与流动[C]// 中国颗粒学会第3届年会暨海峡两岸颗粒技术研讨会.桂林,2002.
Fan Y P, Shi M X, Ye S, et al. Diffusion and flow characteristics of multi-jet in the feed injection zone of FCC riser reactors [C]//The 3rd Annual Conference of Chinese Society of Particuology: Cross Strait Symposium on Particle Technology. Guilin, 2002.
47 Buchanan J S. Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers[J]. Industrial & Engineering Chemistry Research, 1994, 33(12): 3104-3111.
48 Mauleon J L, Courcelle J C. FCC heat balance critical for heavy fuels[J]. Oil and Gas Journal, 1985, 83(42): 64-70.
49 Helmsing M P, Makkee M, Moulijn J A. Short contact time experiments in a novel benchscale FCC riser reactor[J]. Chemical Engineering Science, 1996, 51(11): 3039-3044.
50 Fan Y P, E C L, Shi M X, et al. Diffusion of feed spray in fluid catalytic cracker riser[J]. AIChE Journal, 2010, 56(4): 858-868.
51 Yan Z H, Fan Y P, Wang Z, et al. Dispersion of feed spray in a new type of FCC feed injection scheme[J]. AIChE Journal, 2016, 62(1): 46-61.
52 Yan Z H, Fan Y P, Bi X T, et al. Flow patterns of feed spray in different fluid catalytic cracking feed injection schemes[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6441-6450.
53 Yan Z H, Chen S, Wang Z, et al. Distributions of solids holdup and particle velocity in the FCC riser with downward pointed feed injection scheme[J]. Powder Technology, 2016, 304: 63-72.
54 闫子涵, 王钊, 陈昇, 等. 新型催化裂化提升管进料段油、剂两相混合特性[J]. 化工学报, 2016, 67(8): 3304-3312.
Yan Z H, Wang Z, Chen S, et al. Matching between oil and catalyst in new scheme of FCC feed injection[J]. CIESC Journal, 2016, 67(8): 3304-3312.
55 陈昇. 催化裂化提升管进料区内两相流动、混合特性的模拟及实验研究[D]. 北京: 中国石油大学, 2016.
Chen S. Simulation and experiment of two-phase flow/mixing in the feedstock injection zone of a FCC riser[D]. Beijing: China University of Petroleum, 2016.
56 Chen S, Fan Y P, Kang H Y, et al. Gas-solid-liquid reactive CFD simulation of an industrial RFCC riser with investigation of feed injection[J]. Chemical Engineering Science, 2021, 242: 116740.
57 Yan Z H, Fan Y P, Bi X T, et al. Effects of different gaseous nozzle injections on gas-solid dynamic mixing in FCC riser[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 1055-1067.
58 Patel R, Wang D W, Zhu C, et al. Effect of injection zone cracking on fluid catalytic cracking[J]. AIChE Journal, 2013, 59(4): 1226-1235.
59 李双平. 催化裂化提升管结焦原因及对策[J]. 炼油技术与工程, 2009, 39(5): 23-25.
Li S P. Coking in FCCU riser and preventive measures[J]. Petroleum Refinery Engineering, 2009, 39(5): 23-25.
60 Koksal M, Hamdullahpur F. Gas mixing in circulating fluidized beds with secondary air injection[J]. Chemical Engineering Research and Design, 2004, 82(8): 979-992.
61 傅梦倩, 姚秀颖, 范怡平, 等. 双层喷嘴提升管进料区内气固流动特性的数值模拟[J]. 过程工程学报, 2020, 20(7): 757-769.
Fu M Q, Yao X Y, Fan Y P, et al. Simulation of gas-solid flow characteristics in feedstock injection zone for risers with double-layer nozzles[J]. The Chinese Journal of Process Engineering, 2020, 20(7): 757-769.
62 闫子涵. 催化裂化提升管进料段结构优化及大型冷模实验装置设计[D]. 北京: 中国石油大学, 2014.
Yan Z H. Optimization on the FCC feed injection zone and design of a large-scale cold mode experimental set-up[D]. Beijing: China University of Petroleum, 2014.
63 范怡平. 催化裂化提升管内气固两相流动特性的研究[D]. 北京: 中国石油大学, 2000.
Fan Y P. Characteristics of gas-solid two-phase flow in a FCC riser [D]. Beijing: China University of Petroleum, 2000.
64 曹东学, 范怡平, 时铭显, 等. 催化裂化提升管原料油进料喷嘴位置的确定[J]. 石油炼制与化工, 2005, 36(10): 28-32.
Cao D X, Fan Y P, Shi M X, et al. The installation position of feedstock nozzle in FCC riser[J]. Petroleum Processing and Petrochemicals, 2005, 36(10): 28-32.
65 Zhou S S, Liu M X, Qiao C Z, et al. Flow hydrodynamics in pyridine synthesis coupled reactor feed injection zones[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11544-11554.
66 Zhou S S, Liu M X, Yao X Y, et al. Gas-phase flow hydrodynamics in the feed injection zone of a fluidized-bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10579-10588.
67 Zhou S S, Liu Z L, Yan X, et al. Optimal reaction conditions for pyridine synthesis in riser reactor[J]. Chinese Journal of Chemical Engineering, 2018, 26(7): 1499-1507.
68 刘梦溪, 卢春喜, 周帅帅. 一种气固流化床催化剂混合装置: 108579625A[P]. 2018-09-28.
Liu M X, Lu C X, Zhou S S. Gas-solid fluidized bed catalyst mixing apparatus: 108579625A[P]. 2018-09-28.
69 Reddy K S K, Srinivasakannan C, Raghavan K V. Catalytic vapor phase pyridine synthesis: a process review[J]. Catalysis Surveys from Asia, 2012, 16(1): 28-35.
70 Suresh Kumar Reddy K, Sreedhar I, Vijaya Raghavan K. Kinetic studies on vapour phase pyridine synthesis and catalyst regeneration studies[J]. The Canadian Journal of Chemical Engineering, 2011, 89(4): 854-863.
71 Zhou S S, Liu Z L, Qin D, et al. Investigation of pyridine synthesis in a fast fluidized bed reactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(4): 1179-1187.
72 Zhou S S, Lu C X, Liu M X. Flow hydrodynamics in a gas-solid fluidized bed reactor with two reaction zones[J]. Particuology, 2019, 47: 22-32.
73 Zhou S S, Yan Z H, Liu M X, et al. The model prediction of solid phase hydrodynamics in FCC riser feed injection zones[J]. Powder Technology, 2016, 298: 21-29.
74 Zhou S S, Liu S H, Wei Y F, et al. Coupled fluidized bed reactor for pyridine synthesis[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7466-7475.
[1] 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999.
[2] 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
[3] 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101.
[4] 陈号, 田仪娟, 全学军, 蒋子文, 李纲. 铬铁矿在HCl-HF体系中的分解行为[J]. 化工学报, 2023, 74(3): 1161-1174.
[5] 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144.
[6] 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061.
[7] 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524.
[8] 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104.
[9] 廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234.
[10] 侯跃辉, 刘璇, 廉应江, 韩梅, 尧超群, 陈光文. 超声微反应器内三硝基间苯三酚合成工艺研究[J]. 化工学报, 2022, 73(8): 3597-3607.
[11] 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756.
[12] 王利民, 郭舒宇, 向星, 付少童. 湍流系统的能量最小多尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2415-2426.
[13] 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747.
[14] 马永丽, 刘明言, 胡宗定. 气液固流化床流动介尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2438-2451.
[15] 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!