化工学报 ›› 2023, Vol. 74 ›› Issue (5): 2034-2045.DOI: 10.11949/0438-1157.20221611
孙永尧1,2(), 高秋英1,2, 曾文广1,2, 王佳铭3, 陈艺飞3, 周永哲3, 贺高红3, 阮雪华3()
收稿日期:
2022-12-13
修回日期:
2023-05-03
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
阮雪华
作者简介:
孙永尧(1996—),男,硕士,工程师,2253893150@qq.com
基金资助:
Yongyao SUN1,2(), Qiuying GAO1,2, Wenguang ZENG1,2, Jiaming WANG3, Yifei CHEN3, Yongzhe ZHOU3, Gaohong HE3, Xuehua RUAN3()
Received:
2022-12-13
Revised:
2023-05-03
Online:
2023-05-05
Published:
2023-06-29
Contact:
Xuehua RUAN
摘要:
近年来,随着氮气强化采油的不断推广,含氮油田伴生气产量不断增加,生产合格的管道天然气成为提高资源利用率、增加经济效益的重要命题。本研究从组成特征出发,成功研制并批量生产功能层减薄至700 nm的硅橡胶复合膜,大幅提高分离能力,未溶胀状态下甲烷渗透速率达到358 GPU [1 GPU=1.24 mol/(m2·h·MPa)],同时提出浅冷液化与多级膜渗透集成的耦合分离工艺,在充分回收乙烷和丙烷等化工原料的同时,生产热值满足国家标准GB 17820—2018的管道天然气,实现伴生气高效提质和综合利用。以西北油田某集输站为实施案例,针对7000 m3/h(标准工况)伴生气进行耦合工艺设计,模拟结果显示轻烃收率大于77.6%,甲烷提质利用率大于54.4%,乙烯裂解原料产量23604 t/a,管道天然气产量18.03×106 m3/a(标准工况),创造经济效益预计可达79.0×106 CNY/a,为含氮油田伴生气的高效利用提供了极具前景的加工途径。
中图分类号:
孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields[J]. CIESC Journal, 2023, 74(5): 2034-2045.
Component | Generation cases in oilfield/ %(mol) | Critical properties | |||
---|---|---|---|---|---|
Early stage | Middle stage | Later stage | Tc/K | Vc/ (cm3/mol) | |
N2 | 11.43 | 23.87 | 33.26 | 126.2 | 90.0 |
CH4 | 58.53 | 47.67 | 39.71 | 190.7 | 99.0 |
C2H6 | 11.30 | 10.35 | 9.48 | 305.5 | 98.6 |
C3H8 | 6.30 | 6.12 | 5.94 | 369.9 | 200.0 |
i-C4H10 | 2.02 | 1.99 | 1.97 | 408.1 | 263.0 |
n-C4H10 | 2.75 | 2.73 | 2.71 | 425.2 | 255.0 |
i-C5H12 | 1.71 | 1.71 | 1.71 | 460.4 | 308.0 |
n-C5H12 | 1.44 | 1.44 | 1.44 | 469.7 | 311.0 |
C6H14 | 0.50 | 0.50 | 0.50 | 507.9 | 368.0 |
C7H16 | 0.21 | 0.21 | 0.21 | 540.2 | 426.0 |
CO2 | 2.56 | 2.21 | 1.92 | 304.2 | 93.9 |
H2S | 0.85 | 0.78 | 0.72 | 373.7 | 98.0 |
H2O | 0.41 | 0.42 | 0.42 | 647.3 | 57.1 |
表1 西北油田某集输站油田伴生气的组成
Table 1 Composition of associated gas in a gathering and transportation station of Northwest Oilfield
Component | Generation cases in oilfield/ %(mol) | Critical properties | |||
---|---|---|---|---|---|
Early stage | Middle stage | Later stage | Tc/K | Vc/ (cm3/mol) | |
N2 | 11.43 | 23.87 | 33.26 | 126.2 | 90.0 |
CH4 | 58.53 | 47.67 | 39.71 | 190.7 | 99.0 |
C2H6 | 11.30 | 10.35 | 9.48 | 305.5 | 98.6 |
C3H8 | 6.30 | 6.12 | 5.94 | 369.9 | 200.0 |
i-C4H10 | 2.02 | 1.99 | 1.97 | 408.1 | 263.0 |
n-C4H10 | 2.75 | 2.73 | 2.71 | 425.2 | 255.0 |
i-C5H12 | 1.71 | 1.71 | 1.71 | 460.4 | 308.0 |
n-C5H12 | 1.44 | 1.44 | 1.44 | 469.7 | 311.0 |
C6H14 | 0.50 | 0.50 | 0.50 | 507.9 | 368.0 |
C7H16 | 0.21 | 0.21 | 0.21 | 540.2 | 426.0 |
CO2 | 2.56 | 2.21 | 1.92 | 304.2 | 93.9 |
H2S | 0.85 | 0.78 | 0.72 | 373.7 | 98.0 |
H2O | 0.41 | 0.42 | 0.42 | 647.3 | 57.1 |
Cases | P/MPa(表压) | T/ °C | Composition/%(mol) | |||
---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | |||
MG-1 | 1.50 | 30 | 13.6 | 68.6 | 11.6 | 6.2 |
MG-2 | 1.50 | 30 | 28.0 | 55.3 | 10.6 | 6.1 |
MG-3 | 1.50 | 30 | 37.9 | 45.3 | 10.8 | 6.0 |
MG-4 | 1.50 | 30 | 16.0 | 76.6 | 6.5 | 0.9 |
MG-5 | 1.50 | 30 | 32.0 | 60.7 | 6.4 | 0.9 |
MG-6 | 1.50 | 30 | 43.7 | 49.4 | 6.0 | 0.9 |
MG-7 | 1.50 | 30 | 43.0 | 56.8 | 0.2 | 0 |
MG-8 | 1.50 | 30 | 50.9 | 48.9 | 0.2 | 0 |
MG-9 | 1.50 | 30 | 58.2 | 41.7 | 0.1 | 0 |
MG-10 | 1.50 | 30 | 67.5 | 32.4 | 0.1 | 0 |
表2 测试PDMS涂层复合膜性能的系列含氮冷凝尾气
Table 2 Diversified natural gases after condensation for testing PDMS membrane’s performance
Cases | P/MPa(表压) | T/ °C | Composition/%(mol) | |||
---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | |||
MG-1 | 1.50 | 30 | 13.6 | 68.6 | 11.6 | 6.2 |
MG-2 | 1.50 | 30 | 28.0 | 55.3 | 10.6 | 6.1 |
MG-3 | 1.50 | 30 | 37.9 | 45.3 | 10.8 | 6.0 |
MG-4 | 1.50 | 30 | 16.0 | 76.6 | 6.5 | 0.9 |
MG-5 | 1.50 | 30 | 32.0 | 60.7 | 6.4 | 0.9 |
MG-6 | 1.50 | 30 | 43.7 | 49.4 | 6.0 | 0.9 |
MG-7 | 1.50 | 30 | 43.0 | 56.8 | 0.2 | 0 |
MG-8 | 1.50 | 30 | 50.9 | 48.9 | 0.2 | 0 |
MG-9 | 1.50 | 30 | 58.2 | 41.7 | 0.1 | 0 |
MG-10 | 1.50 | 30 | 67.5 | 32.4 | 0.1 | 0 |
Main components | Permeation rate/GPU | Selectivity | |||||
---|---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | CH4/N2 | C2H6/N2 | C3H8/N2 | |
N2+CH4+C2H6+C3H8 | 151 | 518 | 1059 | 2208 | 3.4 | 7.0 | 14.6 |
N2+CH4+C2H6 | 132 | 422 | 966 | 2005 | 3.2 | 7.3 | 15.2 |
N2+CH4 | 119 | 358 | 911 | 1855 | 3.0 | 7.7 | 15.6 |
表3 用于流程设计优化的PDMS涂层复合膜性能参数
Table 3 Data about PDMS membrane’s performance for process simulation and optimization
Main components | Permeation rate/GPU | Selectivity | |||||
---|---|---|---|---|---|---|---|
N2 | CH4 | C2H6 | C3H8 | CH4/N2 | C2H6/N2 | C3H8/N2 | |
N2+CH4+C2H6+C3H8 | 151 | 518 | 1059 | 2208 | 3.4 | 7.0 | 14.6 |
N2+CH4+C2H6 | 132 | 422 | 966 | 2005 | 3.2 | 7.3 | 15.2 |
N2+CH4 | 119 | 358 | 911 | 1855 | 3.0 | 7.7 | 15.6 |
图6 膜面积对膜耦合强化浅冷加工流程CASE-2设备投资的影响TEI—total equipment investment; AM—membrane area
Fig.6 Effects of PDMS membrane area on equipment investment for CASE-2
图8 膜面积对膜耦合强化浅冷加工流程CASE-2年费用及收益的影响GEmax—maximum gross earning; AM,Opm—optimized membrane area
Fig.8 Effects of PDMS membrane area on the annual cost and earning for CASE-2
Parameter | CASE-1 | CASE-2 | CASE-3 |
---|---|---|---|
investment/106 CNY | 15.93 | 27.19 | 38.68 |
depreciation/(106 CNY/a) | 1.12 | 2.27 | 3.40 |
operation cost/(106 CNY/a) | 6.03 | 10.82 | 14.93 |
gross profit/(106 CNY/a) | 47.67 | 61.90 | 79.00 |
NGL yield/(t/a) | 16296 | 22092 | 23604 |
NGL recovery/%(mass) | 53.4 | 74.5 | 77.6 |
NG yield/(106 m3/a, standard condition) | — | — | 18.03 |
NG recovery/% | — | — | 54.4 |
poor NG yield/(106 m3/a,standard condition) | 49.87 | 46.10 | 27.79 |
表4 三种含氮天然气资源化分离流程的经济性对比
Table 4 Comparative analysis of economic parameters for three separation systems
Parameter | CASE-1 | CASE-2 | CASE-3 |
---|---|---|---|
investment/106 CNY | 15.93 | 27.19 | 38.68 |
depreciation/(106 CNY/a) | 1.12 | 2.27 | 3.40 |
operation cost/(106 CNY/a) | 6.03 | 10.82 | 14.93 |
gross profit/(106 CNY/a) | 47.67 | 61.90 | 79.00 |
NGL yield/(t/a) | 16296 | 22092 | 23604 |
NGL recovery/%(mass) | 53.4 | 74.5 | 77.6 |
NG yield/(106 m3/a, standard condition) | — | — | 18.03 |
NG recovery/% | — | — | 54.4 |
poor NG yield/(106 m3/a,standard condition) | 49.87 | 46.10 | 27.79 |
1 | 陈平, 樊洪, 漆明勇. 川中低渗油田开发后期伴生气增压开采技术[J]. 天然气工业, 2003, 23(S1):136-138, 17. |
Chen P, Fan H, Qi M Y. Accompanying gas recovering techniques with booster for late development of low permeability oil fields in middle Sichuan area[J]. Natural Gas Industry, 2003, 23(S1):136-138, 17. | |
2 | 赵春鹏. 特低渗透油藏渗流及开采特性实验研究[D]. 北京: 中国石油大学(北京), 2007. |
Zhao C P. Experimental study on seepage and production characteristics of ultra-low permeability reservoir[D]. Beijing: China University of Petroleum, 2007. | |
3 | 刘继伟, 王刘琦, 肖世鑫, 等. 稠油区块氮气泡沫辅助蒸汽驱技术[J]. 油气田地面工程, 2013, 32(12): 6-7. |
Liu J W, Wang L Q, Xiao S X, et al. Nitrogen foam assisted steam flooding technology in heavy oil block[J]. Oil-Gasfield Surface Engineering, 2013, 32(12): 6-7. | |
4 | Han D K, Yang C Z, Zhang Z Q, et al. Recent development of enhanced oil recovery in China[J]. Journal of Petroleum Science and Engineering, 1999, 22(1/2/3): 181-188. |
5 | Gbadamosi A O, Junin R, Manan M A, et al. An overview of chemical enhanced oil recovery: recent advances and prospects[J]. International Nano Letters, 2019, 9(3): 171-202. |
6 | 付洪涛, 王世栋, 潘一, 等. 气体驱油的研究现状[J]. 能源化工, 2015, 36(5): 44-48. |
Fu H T, Wang S D, Pan Y, et al. Research status of gas flooding[J]. Energy Chemical Industry, 2015, 36(5): 44-48. | |
7 | 侯焜 译. 塔河油田规模氮气驱地面配套方案研究[D]. 北京: 中国石油大学(北京), 2019. |
Hou K Y. Study on surface matching scheme of large-scale nitrogen flooding in Tahe oilfield[D]. Beijing: China University of Petroleum, 2019. | |
8 | 任增泉. 塔河油田注气开发地面配套技术研究[D]. 东营: 中国石油大学(华东), 2016. |
Ren Z Q. Study on surface supporting technology of gas injection development in Tahe oilfield[D]. Dongying: China University of Petroleum, 2016. | |
9 | Wei P, Pu W F, Sun L, et al. Research on nitrogen foam for enhancing oil recovery in harsh reservoirs[J]. Journal of Petroleum Science and Engineering, 2017, 157: 27-38. |
10 | Fahandezhsaadi M, Amooie M A, Hemmati-Sarapardeh A, et al. Laboratory evaluation of nitrogen injection for enhanced oil recovery: effects of pressure and induced fractures[J]. Fuel, 2019, 253: 607-614. |
11 | Sun L, Wei P, Pu W F, et al. The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments[J]. Journal of Petroleum Science and Engineering, 2016, 147: 485-494. |
12 | 中国国家市场监督管理总局, 中国国家标准化管理委员会. 天然气: [S]. 北京: 中国标准出版社, 2018. |
China’s State Administration for Market Regulation, Standardization Administration of China. Natural gas: [S]. Beijing: China Standard Press, 2018. | |
13 | 顾晓峰, 王日生, 吴宝清, 等. 天然气脱氮工艺评述[J]. 石油与天然气化工, 2019, 48(1): 12-17. |
Gu X F, Wang R S, Wu B Q, et al. Review on natural gas denitrification process[J]. Chemical Engineering of Oil and Gas, 2019, 48(1): 12-17. | |
14 | 韩治洋, 丁兆阳, 韩旸湲, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758. |
Han Z Y, Ding Z Y, Han Y Y, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 750-758. | |
15 | 于喆淼, 王志, 生梦龙, 等. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
Yu Z M, Wang Z, Sheng M L, et al. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization[J]. CIESC Journal, 2022, 73(7): 3273-3286. | |
16 | 王少靖, 刘琳琳, 张磊, 等. 集成NGL回收的新型天然气液化系统AP-XTM的概念设计与模拟分析[J]. 化工学报, 2019, 70(2): 508-515. |
Wang S J, Liu L L, Zhang L, et al. Conceptual design, simulation and analysis of novel AP-XTM system integrated with NGL recovery process for large-scale LNG plant[J]. CIESC Journal, 2019, 70(2): 508-515. | |
17 | 孙伟娜, 阎海宇, 张东辉. 真空变压吸附分离氮气甲烷流程灵敏度分析与优化[J]. 化工学报, 2016, 67(2): 598-605. |
Sun W N, Yan H Y, Zhang D H. Sensitivity analysis and optimization of vacuum pressure swing adsorption process for N2/CH4 separation[J]. CIESC Journal, 2016, 67(2): 598-605. | |
18 | Baker R W. Future directions of membrane gas separation technology[J]. Industrial & Engineering Chemistry Research, 2002, 41(6): 1393-1411. |
19 | Merkel T C, Bondar V I, Nagai K, et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(3): 415-434. |
20 | Cecopieri-Gómez M L, Palacios-Alquisira J, Domínguez J M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes[J]. Journal of Membrane Science, 2007, 293(1/2): 53-65. |
21 | Wu T, Diaz M C, Zheng Y H, et al. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes[J]. Journal of Membrane Science, 2015, 473: 201-209. |
22 | Zhou R F, Pan Y C, Xing W H, et al. Advanced microporous membranes for H2/CH4 separation: challenges and perspectives[J]. Advanced Membranes, 2021, 1: 100011. |
23 | Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109-2121. |
24 | Lokhandwala K A, Pinnau I, He Z J, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment[J]. Journal of Membrane Science, 2010, 346(2): 270-279. |
25 | 李雯, 王志, 李潘源, 等. 用于甲烷-氮气体系分离的膜技术研究进展[J]. 化工学报, 2016, 67(2): 404-415. |
Li W, Wang Z, Li P Y, et al. Progress in membrane technology for CH4-N2 separation[J]. CIESC Journal, 2016, 67(2): 404-415. | |
26 | 陈雷, 李东泽, 刘刚, 等. 甲烷-氮气分离膜研究进展及展望[J]. 天然气工业, 2022, 42(5): 120-130. |
Chen L, Li D Z, Liu G, et al. Research progress and prospect of CH4/N2 separation membranes[J]. Natural Gas Industry, 2022, 42(5): 120-130. | |
27 | 李鹏, 赵德银, 张健, 等. 油田伴生气净化工艺优化研究及工业应用[J]. 石油与天然气化工, 2021, 50(2): 17-22. |
Li P, Zhao D Y, Zhang J, et al. Optimization study and industrial application of oilfield associated gas purification process[J]. Chemical Engineering of Oil and Gas, 2021, 50(2): 17-22. | |
28 | Koros W J, Fleming G K, Jordan S M, et al. Polymeric membrane materials for solution-diffusion based permeation separations[J]. Progress in Polymer Science, 1988, 13(4): 339-401. |
29 | Wijmans J G, Baker R W. The solution-diffusion model: a review[J]. Journal of Membrane Science, 1995, 107(1/2): 1-21. |
30 | Pandey P, Chauhan R S. Membranes for gas separation[J]. Progress in Polymer Science, 2001, 26(6): 853-893. |
31 | Katoh T, Tokumura M, Yoshikawa H, et al. Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module: nonideal mixing flows in permeate and residue sides using the tanks-in-series model[J]. Separation and Purification Technology, 2011, 76(3): 362-372. |
32 | Ruan X H, He G H, Li B J, et al. Chemical potential analysis for directing the optimal design of gas membrane separation frameworks[J]. Chemical Engineering Science, 2014, 107: 245-255. |
33 | Ruan X H, Dai Y, Du L, et al. Further separation of HFC-23 and HCFC-22 by coupling multi-stage PDMS membrane unit to cryogenic distillation[J]. Separation and Purification Technology, 2015, 156: 673-682. |
34 | Chen B, Ruan X H, Xiao W, et al. Synergy of CO2 removal and light hydrocarbon recovery from oil-field associated gas by dual-membrane process[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1254-1263. |
35 | Chen B, Ruan X H, Jiang X B, et al. Dual-membrane module and its optimal flow pattern for H2/CO2 separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(4): 1064-1075. |
36 | 阮雪华. 气体膜分离及其梯级耦合流程的设计与优化[D]. 大连: 大连理工大学, 2014. |
Ruan X H. Design and optimization of gas membrane separation and its cascade coupling process[D]. Dalian: Dalian University of Technology, 2014. | |
37 | 阮雪华, 贺高红, 肖武, 等. 生物甲烷膜分离提纯系统的设计与优化[J]. 化工学报, 2014, 65(5): 1688-1695. |
Ruan X H, He G H, Xiao W, et al. Design and optimization of membrane-based system for bio-methane purification[J]. CIESC Journal, 2014, 65(5): 1688-1695. | |
38 | Ruan X H, Xiao H Y, Jiang X B, et al. Graphic synthesis method for multi-technique integration separation sequences of multi-input refinery gases[J]. Separation and Purification Technology, 2019, 214: 187-195. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[4] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[5] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[6] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[7] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[8] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[9] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[10] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[11] | 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754. |
[12] | 陈号, 田仪娟, 全学军, 蒋子文, 李纲. 铬铁矿在HCl-HF体系中的分解行为[J]. 化工学报, 2023, 74(3): 1161-1174. |
[13] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[14] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
[15] | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 194
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||