化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4055-4063.DOI: 10.11949/0438-1157.20201618
收稿日期:
2020-11-10
修回日期:
2021-02-21
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
王斯民
作者简介:
林伟翔(1998—),男,硕士研究生,基金资助:
Weixiang LIN1(),Gangchuan SU1,Qiang CHEN2,Jian WEN3,Simin WANG1()
Received:
2020-11-10
Revised:
2021-02-21
Online:
2021-08-05
Published:
2021-08-05
Contact:
Simin WANG
摘要:
针对沉浸式换热器管外强化传热的问题,采用振动壁面的方式向换热器内输入超声波,研究了超声外场对沉浸式换热器内的管外流动、空化现象以及传热强化的作用。超声作用在流体中能够产生空化现象和声流的传播。其空化作用使得邻近振动面的流体发生液气相变,在远离振子的区域发生微小气泡的膨胀,换热器管外流体区域的平均气体体积分数由未加载超声时的0.01302最大增至0.01359。声流现象使得换热器管外流体的流速具有和超声波相同的脉动变化特性,呈高低速相间分布流向换热器两侧,最低速度接近0,最高速度4.93 m·s-1,平均流速由0.0248 m·s-1增至0.102 m·s-1,超声作用效果显著。在空化和声流的双重作用下,换热管外表面湍动能均值由2.090×10-4 m2·s-2增大至0.01847 m2·s-2,表明换热管外表面流体受到扰动增强,换热管外表面对流传热系数由1634.533 W·m-2·K-1增大至2031.069 W·m-2·K-1,传热强化比率达24.26%。本研究对超声技术在沉浸式换热器内的应用具有重要意义。
中图分类号:
林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063.
Weixiang LIN, Gangchuan SU, Qiang CHEN, Jian WEN, Simin WANG. Research on heat transfer enhancement of immersed coil heat exchanger by ultrasonic technology[J]. CIESC Journal, 2021, 72(8): 4055-4063.
网格尺寸/mm | 网格数量 | 热通量/(W·m-2) | 相对变化/% | 平均温度/℃ | 相对变化/% | 出口温度/℃ | 相对变化/% |
---|---|---|---|---|---|---|---|
1.0 | 15057 | 85544.46 | — | 298.7199 | — | 299.9380 | — |
0.5 | 24610 | 90627.44 | 5.9 | 299.1242 | 0.14 | 300.3132 | 0.13 |
0.4 | 31767 | 94334.49 | 4.1 | 299.5822 | 0.15 | 300.6069 | 0.098 |
0.3 | 47013 | 99956.90 | 6.0 | 300.0695 | 0.16 | 301.0508 | 0.15 |
0.2 | 90532 | 105794.31 | 5.8 | 300.5438 | 0.16 | 301.5044 | 0.15 |
0.1 | 332280 | 106228.31 | 0.41 | 300.6533 | 0.036 | 301.5308 | 0.0087 |
表1 网格无关性验证
Table 1 Grid independence verification
网格尺寸/mm | 网格数量 | 热通量/(W·m-2) | 相对变化/% | 平均温度/℃ | 相对变化/% | 出口温度/℃ | 相对变化/% |
---|---|---|---|---|---|---|---|
1.0 | 15057 | 85544.46 | — | 298.7199 | — | 299.9380 | — |
0.5 | 24610 | 90627.44 | 5.9 | 299.1242 | 0.14 | 300.3132 | 0.13 |
0.4 | 31767 | 94334.49 | 4.1 | 299.5822 | 0.15 | 300.6069 | 0.098 |
0.3 | 47013 | 99956.90 | 6.0 | 300.0695 | 0.16 | 301.0508 | 0.15 |
0.2 | 90532 | 105794.31 | 5.8 | 300.5438 | 0.16 | 301.5044 | 0.15 |
0.1 | 332280 | 106228.31 | 0.41 | 300.6533 | 0.036 | 301.5308 | 0.0087 |
1 | Paradis P L, Rousse D R, Lamarche L, et al. One-dimensional model of a stratified thermal storage tank with supercritical coiled heat exchanger[J]. Applied Thermal Engineering, 2018, 134: 379-395. |
2 | Abdelsalam M Y, Lightstone M F, Cotton J S. A novel approach for modelling thermal energy storage with phase change materials and immersed coil heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 136: 20-33. |
3 | Huang Z J, Zou Y K, Ding J, et al. Experimental investigation of heat transfer in coiled tube type molten salt steam generator[J]. Applied Thermal Engineering, 2019, 148: 1131-1138. |
4 | Ye Q, Li S H. Investigation on the performance and optimization of heat pump water heater with wrap-around condenser coil[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118556. |
5 | 朱冬生, 沈家龙, 蒋翔, 等. 蒸发式冷凝器性能研究及强化[J]. 制冷学报, 2006, 27(3): 45-49. |
Zhu D S, Shen J L, Jiang X, et al. Study on performance enhancement for evaporative condenser[J]. Journal of Refrigeration, 2006, 27(3): 45-49. | |
6 | 高松涛, 王芳, 陈曦, 等. 沉浸式蒸发盘管蓄冰机理分析及仿真[J]. 低温工程, 2010,(3): 30-34. |
Gao S T, Wang F, Chen X, et al. Analysis on ice-storage mechanism and simulation for an immersion evaporative coil[J]. Cryogenics, 2010,(3): 30-34. | |
7 | Pan J, Mao D, Bai J H, et al. Thermal behavior calculation and analysis of submerged combustion LNG vaporizer[J]. Applied Thermal Engineering, 2020, 178: 115660. |
8 | 韩昌亮, 任婧杰, 董文平, 等. 沉浸式汽化器壳程流体传热实验与数值模拟[J]. 化工学报, 2016, 67(10): 4095-4103. |
Han C L, Ren J J, Dong W P, et al. Experimental study and numerical simulation on shell side fluid heat transfer in submerged combustion vaporizer[J]. CIESC Journal, 2016, 67(10): 4095-4103. | |
9 | 史美中, 王中铮. 热交换器原理与设计[M]. 5版. 南京: 东南大学出版社, 2014. |
Shi M Z, Wang Z Z. Principle and Design of Heat Exchangers[M]. 5th ed. Nanjing: Southeast University Press, 2014. | |
10 | 毕纪葛, 潘万贵, 周俊超, 等. 四斜叶桨搅拌下釜内盘管非稳态对流传热过程的模拟和实验研究[J]. 高校化学工程学报, 2015, 29(4): 780-788. |
Bi J G, Pan W G, Zhou J C, et al. CFD simulation and experimental study of heat transfer in a stirred tank equipped with a pitched-blade turbine and helical coils[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(4): 780-788. | |
11 | Alimoradi A, Olfati M, Maghareh M. Numerical investigation of heat transfer intensification in shell and helically coiled finned tube heat exchangers and design optimization[J]. Chemical Engineering and Processing: Process Intensification, 2017, 121: 125-143. |
12 | 李安军, 邢桂菊, 周丽雯. 换热器强化传热技术的研究进展[J]. 冶金能源, 2008, 27(1): 50-54. |
Li A J, Xing G J, Zhou L W. Progress in study on technology of heat transfer enhancement for heat exchanger[J]. Energy for Metallurgical Industry, 2008, 27(1): 50-54. | |
13 | 姜鹏, 阎华, 张震, 等. 换热器内插件的研究进展[J]. 广州化工, 2011, 39(20): 1-2, 19. |
Jiang P, Yan H, Zhang Z, et al. Development on heat exchanger inserts research[J]. Guangzhou Chemical Industry, 2011, 39(20): 1-2, 19. | |
14 | 林书玉, 张福成, 郭孝武. 关于改善超声清洗声场均匀性的研究[J]. 应用声学, 1993, 12(2): 34-38. |
Lin S Y, Zhang F C, Guo X W. Study on improving the uniformity of ultrasonic cleaning sound field [J]. Applied Acoustics, 1993, 12(2): 34-38. | |
15 | Chen B Q, Wan Z P, Chen G, et al. Improvement of ultrasonic heat transfer enhancement using acoustical focusing and resonance properties[J]. International Communications in Heat and Mass Transfer, 2019, 104: 60-69. |
16 | Wang Y C, Yao M C. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor[J]. Ultrasonics Sonochemistry, 2013, 20(1): 565-570. |
17 | 郑军, 曾丹苓, 王萍, 等. 利用流体脉动强化换热的试验研究[J]. 热科学与技术, 2003, 2(3): 245-249. |
Zheng J, Zeng D L, Wang P, et al. Experimental study of heat transfer enhancement with pulsating flow[J]. Journal of Thermal Science and Technology, 2003, 2(3): 245-249. | |
18 | 吕平, 刘文杰, 张博, 等. 振动对管内流体对流传热影响实验研究[J]. 大连理工大学学报, 2018, 58(2): 118-123. |
Lyu P, Liu W J, Zhang B, et al. Experiment study of vibration effect on convective heat transfer characteristics of internal flow in tube[J]. Journal of Dalian University of Technology, 2018, 58(2): 118-123. | |
19 | 陈伟中. 声空化物理[M]. 北京: 科学出版社, 2014. |
Chen W Z. Acoustic Cavitation Physics [M]. Beijing: Science Press, 2014. | |
20 | Kim H J, Jeong J H. Numerical analysis of experimental observations for heat transfer augmentation by ultrasonic vibration[J]. Heat Transfer Engineering, 2006, 27(2): 14-22. |
21 | Schneider B, Koşar A, Kuo C J, et al. Cavitation enhanced heat transfer in microchannels[J]. Journal of Heat Transfer, 2006, 128(12): 1293-1301. |
22 | 张艾萍, 夏荣涛, 丁权, 等. 超声空化对换热器换热效果影响的研究[J]. 化工机械, 2016, 43(6): 764-769, 809. |
Zhang A P, Xia R T, Ding Q, et al. Study on influence of ultrasonic cavitation on heat transfer effect of heat exchangers[J]. Chemical Engineering & Machinery, 2016, 43(6): 764-769, 809. | |
23 | 张艾萍, 张越. 基于场协同理论的超声波对强化换热影响[J]. 热能动力工程, 2017, 32(5): 19-25, 134. |
Zhang A P, Zhang Y. Ultrasound effects on improving heat transfer based on field synergy theory[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(5): 19-25, 134. | |
24 | 荣兵兵, 江斌, 倪宜华. 基于超声技术的沉浸式换热器强化换热的仿真研究[J]. 南方农机, 2017, 48(9): 69-73. |
Rong B B, Jiang B, Ni Y H. Simulation study on heat transfer enhancement of immersive heat exchanger based on ultrasonic technology [J]. China Southern Agricultural Machinery, 2017, 48(9): 69-73. | |
25 | 沈灵. 基于超声空化的振动边界作用流场的数值模拟[D]. 北京: 清华大学, 2011. |
Shen L. Numerical simulation of the flow field induced by vibrating surface in the application of ultrasonic cavitation[D]. Beijing: Tsinghua University, 2011. | |
26 | Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289. |
27 | Cheng H Y, Long X P, Ji B, et al. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas[J]. International Journal of Multiphase Flow, 2021, 134: 103441. |
28 | 黄彪, 王国玉, 张博, 等. 空化模型在非定常空化流动计算的应用评价与分析[J]. 船舶力学, 2011, 15(11): 1195-1202. |
Huang B, Wang G Y, Zhang B, et al. Assessment of cavitation models for computation of unsteady cavitating flows[J]. Journal of Ship Mechanics, 2011, 15(11): 1195-1202. | |
29 | Singhal A K, Athavale M M, Li H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624. |
30 | 孙冰. 基于FLUENT软件的超声空化数值模拟[D]. 大连: 大连海事大学, 2008. |
Sun B. Numerical simulation of ultrasonic cavitation based on FLUENT[D]. Dalian: Dalian Maritime University, 2008. | |
31 | 孙冰, 张会臣. 基于CFD方法的超声空化发生特性数值分析[J]. 润滑与密封, 2009, 34(4): 55-60. |
Sun B, Zhang H C. Numerical simulation of ultrasonic cavitation based on FLUENT[J]. Lubrication Engineering, 2009, 34(4): 55-60. |
[1] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[2] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[8] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[11] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[12] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[13] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[14] | 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702. |
[15] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||