化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3807-3818.DOI: 10.11949/0438-1157.20200577
王维1(),姜雪迎1,李悦1,苏丽萍1,邹昀1(),童张法2()
收稿日期:
2020-05-12
修回日期:
2020-06-02
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
邹昀,童张法
作者简介:
王维(1996—),男,硕士研究生,基金资助:
Wei WANG1(),Xueying JIANG1,Yue LI1,Liping SU1,Yun ZOU1(),Zhangfa TONG2()
Received:
2020-05-12
Revised:
2020-06-02
Online:
2020-08-05
Published:
2020-08-05
Contact:
Yun ZOU,Zhangfa TONG
摘要:
为了实现低能耗且高效分离乙酸乙酯中的低含量水分,选用亲水型纳米ZSM-5沸石分子筛材料作为改性剂,填充到聚乙烯醇(PVA)聚合物中制备PVA/ZSM-5混合基质膜(MMMs)。采用SEM、FTIR、XRD、TGA和接触角测量仪等对膜材料的形态、物化性质进行表征分析,并考察膜材料在不同溶液中的溶胀行为以及通过单因素实验探究填料含量、进料温度、进料浓度对渗透汽化分离乙酸乙酯和水混合物的性能的影响。结果表明,ZSM-5与PVA结合紧密且分散均匀,除了ZSM-5固有的亲水性外,ZSM-5还与PVA分子之间存在氢键相互作用,但两者之间并没有发生化学作用。随着进料浓度的增加,渗透通量增大,而分离因子呈减小趋势;随着进料温度升高,渗透通量和分离因子均增大;随着ZSM-5填充量的增加,渗透通量和分离因子均先增大后减小。当ZSM-5填充量为6%(质量)时,渗透通量和分离因子达到最大值,分别为1231 g/(m2·h)和6072,相比纯PVA膜分离指数(PSI)提高了2.9倍。新设计的PVA/ZSM-5混合基质膜(MMMs)可在工业水平上用于乙酸乙酯及其他类似化合物的脱水。
中图分类号:
王维, 姜雪迎, 李悦, 苏丽萍, 邹昀, 童张法. 亲水型ZSM-5分子筛填充PVA膜及分离乙酸乙酯/水的应用[J]. 化工学报, 2020, 71(8): 3807-3818.
Wei WANG, Xueying JIANG, Yue LI, Liping SU, Yun ZOU, Zhangfa TONG. Application of PVA membrane filled with hydrophilic ZSM-5 molecular sieve on separation of water from ethyl acetate[J]. CIESC Journal, 2020, 71(8): 3807-3818.
图9 不同温度下PVA/ZSM-5混合基质膜在4%(质量)水-乙酸乙酯进料液中的溶胀度
Fig.9 Swelling degree of PVA/ZSM-5 filled membrane in 4%(mass) water-ethyl acetate feed at different temperatures
Material | δd/(J/cm3)1/2 | δp/(J/cm3)1/2 | δh/(J/cm3)1/2 | δ/(J/cm3)1/2 |
---|---|---|---|---|
PVA | 22.31 | 19.92 | 28.23 | 41.13 |
EAc | 18.05 | 5.89 | 9.17 | 21.08 |
water | 12.27 | 7.38 | 34.15 | 36.29 |
表1 PVA、乙酸乙酯及水的溶解度参数
Table 1 Solubility parameters of PVA, EAc and water
Material | δd/(J/cm3)1/2 | δp/(J/cm3)1/2 | δh/(J/cm3)1/2 | δ/(J/cm3)1/2 |
---|---|---|---|---|
PVA | 22.31 | 19.92 | 28.23 | 41.13 |
EAc | 18.05 | 5.89 | 9.17 | 21.08 |
water | 12.27 | 7.38 | 34.15 | 36.29 |
图12 不同ZSM-5填充量的复合膜对分离4%(质量)水-乙酸乙酯进料液的渗透汽化分离性能的影响
Fig.12 Effect of ZSM-5 loading in membrane on pervaporation performance of 4%(mass) water-ethyl acetate feed
Membrane | Feed temperature/℃ | Feed water concentration/%(mass) | Total flux/(g/(m2·h)) | Separation factor | Ref. |
---|---|---|---|---|---|
PVA(crosslinked by TAC) | 50 | 2.5 | 54 | 4000 | [ |
PFSA-TEOS/PAN | 40 | 2 | 186 | 496 | [ |
PU | 30 | 8 | 147 | 42 | [ |
PVA/ceramic | 60 | 2.6 | 192 | 1265 | [ |
NaA zeolite | 50 | 2 | 315 | 16300 | [ |
PVA/PAN | 40 | 2 | 34.5 | 7270 | [ |
MXene/CS | 50 | 2 | 1400 | 4898 | [ |
PBI/PEI | 60 | 2 | 820 | 2478 | [ |
CS | 40 | 2 | 336 | 6270 | [ |
UiO-66@graphene oxide | 50 | 2 | 3233 | 6951 | [ |
PVA/ZSM-5(6) | 30 | 4 | 1231 | 6072 | this work |
表2 PVA/ZSM-5 MMMs渗透汽化性能与文献中水-乙酸乙酯混合物脱水膜性能的对比
Table 2 Pervaporation performance of PVA/ZSM-5 MMMs compared with membranes reported in dehydration of water-EAc mixture
Membrane | Feed temperature/℃ | Feed water concentration/%(mass) | Total flux/(g/(m2·h)) | Separation factor | Ref. |
---|---|---|---|---|---|
PVA(crosslinked by TAC) | 50 | 2.5 | 54 | 4000 | [ |
PFSA-TEOS/PAN | 40 | 2 | 186 | 496 | [ |
PU | 30 | 8 | 147 | 42 | [ |
PVA/ceramic | 60 | 2.6 | 192 | 1265 | [ |
NaA zeolite | 50 | 2 | 315 | 16300 | [ |
PVA/PAN | 40 | 2 | 34.5 | 7270 | [ |
MXene/CS | 50 | 2 | 1400 | 4898 | [ |
PBI/PEI | 60 | 2 | 820 | 2478 | [ |
CS | 40 | 2 | 336 | 6270 | [ |
UiO-66@graphene oxide | 50 | 2 | 3233 | 6951 | [ |
PVA/ZSM-5(6) | 30 | 4 | 1231 | 6072 | this work |
1 | Wang Y. Pervaporation dehydration of ethyl acetate via PBI/PEI hollow fiber membranes[J]. Industrial & Engineering Chemistry Research, 2015, 54(11): 3082-3089. |
2 | Lee H Y, Li S Y, Chen C L. et al. Evolutional design and control of the equilibrium-limited ethyl acetate process via reactive distillation-pervaporation hybrid configuration[J]. Industrial & Engineering Chemistry Research, 2016, 55: 8802-8817. |
3 | 邹昀, 童张法, 刘琨, 等. 间歇反应器内醋酸丁酯酯化反应与渗透汽化集成过程的模型计算[J]. 催化学报, 2010, 31(8): 999-1005. |
Zou Y, Tong Z F, Liu K, et al. Modeling of esterification in a batch reactor coupled with pervaporation for production of n-butyl acetate[J]. Chinese Journal of Catalysis, 2010, 31(8): 999-1005. | |
4 | 刘琨, 杨超, 陈松, 等. 聚醚共聚酰胺(PEBA)膜的溶胀和渗透汽化行为研究[J]. 高校化学工程学报, 2010, 24(1): 16-21. |
Liu K, Yang C, Chen S, et al. Swelling and pervaporation behavior of poly(ether block amide) membrane[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1): 16-21. | |
5 | Steinigeweg S, Gmehling J. n-Butyl acetate synthesis via reactive distillation: thermodynamic aspects, reaction kinetics, pilot-plant experiments, and simulation studies[J]. Industrial & Engineering Chemistry Research, 2002, 41(22): 5483-5490. |
6 | 韦藤幼, 童张法. 连续催化反应精馏生产醋酸丁酯新工艺[J]. 化工设计, 2003, 13(3): 14-16. |
Wei T Y, Tong Z F. Butyl acetate production new process by continuous catalytic reaction and distillation[J]. Chemical Engineering Design, 2003, 13(3): 14-16. | |
7 | Dong Y Q, Ming W, Lin C, et al. Preparation, characterization of P(VDF-HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water[J]. Desalination, 2012, 295: 53-60. |
8 | Salt Y, Hasanoğlu Ayça, Salt İnci, et al. Pervaporation separation of ethylacetate–water mixtures through a crosslinked poly(vinylalcohol) membrane[J]. Vacuum, 2005, 79(3/4): 215-220. |
9 | Dharupaneedi S P, Anjanapura R V, Han J M, et al. Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14474-14484. |
10 | Chen Y T, Liao Y L, Sun Y M, et al. Lignin as an effective agent for increasing the separation performance of crosslinked polybenzoxazine based membranes in pervaporation dehydration application[J]. Journal of Membrane Science, 2019, 578: 156-162. |
11 | Yang H, Wu H, Pan F S, et al. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution[J]. Journal of Membrane Science, 2016, 520: 583-595. |
12 | Zereshki S, Figoli A, Madaeni S S, et al. Effect of polymer composition in PEEKWC/PVP blends on pervaporation separation of ethanol/cyclohexane mixture[J]. Separation and Purification Technology, 2010, 75(3): 257-265. |
13 | Xia S S, Dong X L, Zhu Y X, et al. Dehydration of ethyl acetate–water mixtures using PVA/ceramic composite pervaporation membrane[J]. Separation & Purification Technology, 2011, 77(1): 53-59. |
14 | Yuan H K, Xu Z L, Shi J H, et al. Perfluorosulfonic acid-tetraethoxysilane/polyacrylonitrile (PFSA-TEOS/PAN) hollow fiber composite membranes prepared for pervaporation dehydration of ethyl acetate-water solutions[J]. Journal of Applied Polymer Science, 2008, 109(6): 4025-4035. |
15 | Zhang S Y, Zou Y, Wei T Y, et al. Pervaporation dehydration of binary and ternary mixtures of n-butyl acetate, n-butanol and water using PVA-CS blended membranes[J]. Separation & Purification Technology, 2017, 173: 314-322. |
16 | Suhas D P, Aminabhavi T M, Raghu A V. Mixed matrix membranes of H-ZSM5-loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: influence of silica/alumina ratio[J]. Polymer Engineering & Science, 2014, 54(8): 1774-1782. |
17 | Prasad C V, Swamy B Y, Sudhakar H, et al. Preparation and characterization of 4A zeolite-filled mixed matrix membranes for pervaporation dehydration of isopropyl alcohol[J]. Journal of Applied Polymer Science, 2011, 121(3): 1521-1529. |
18 | Vatani M, Raisi A, Pazuki G, et al. Mixed matrix membrane of ZSM-5/poly(ether-block-amide)/polyethersulfone for pervaporation separation of ethyl acetate from aqueous solution[J]. Microporous and Mesoporous Materials, 2018, 263: 257-267. |
19 | Shi G M, Yang T, Chung T S, et al. Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols[J]. Journal of Membrane Science, 2012, 415: 577-586. |
20 | Liu X L, Li Y S, Zhu G Q, et al. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols[J]. Angewandte Chemie-International Edition, 2011, 50(45): 10636-10639. |
21 | Liu B B, Cao Y M, Yuan Q. Preparation and characterization of pervaporation membranes of ZSM-5 zeolite incorporated chitosan[J]. Acta Polymerica Sinica, 2009, 7(7): 599-603. |
22 | 朱美华, 夏水莲, 刘永生, 等. 二次水热合成法制备ZSM-5分子筛膜及其渗透汽化性能[J]. 化工进展, 2016, 35(9): 2885-2891. |
Zhu M H, Xia S L, Liu Y S, et al. Preparation and pervaporation performance of ZSM-5 zeolite membrane by twice hydrothermal synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2885-2891. | |
23 | Huang Z, Ru X F, Zhu Y T, et al. Poly(vinyl alcohol)/ZSM-5 zeolite mixed matrix membranes for pervaporation dehydration of isopropanol/water solution through response surface methodology[J]. Chemical Engineering Research and Design, 2019, 144: 19-34. |
24 | Zhao J, Zhao X T, Jiang Z Y, et al. Biomimetic and bioinspired membranes: preparation and application[J]. Progress in Polymer Science, 2014, 39(9): 1668-1720. |
25 | Huang K, Liu G P, Lou Y Y, et al. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution[J]. Angewandte Chemie-International English, 2014, 53(27): 6929-6932. |
26 | Zhang L, Li Y W, Liu Q, et al. Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation [J]. Journal of Membrane Science, 2019, 584: 268-281. |
27 | Hansen C M. Hansen Solubility Parameters [M]. 2nd ed. CRC Press, 2007. |
28 | Fedors R F. A method for estimating both the solubility parameters and molar volumes of liquids[J]. Polymer Engineering and Science, 1974, 14(2): 147-154. |
29 | 张时雨, 邹昀, 韦藤幼, 等. β-环糊精/聚醚共聚乙酰胺混合基质膜的制备及渗透汽化分离水中微量苯酚[J]. 化工学报, 2016, 67(11): 4662-4670. |
Zhang S Y, Zou Y, Wei T Y, et al. Preparation of β-cyclodextrin filled PEBA membranes and pervaporation separation of phenol from dilute solution[J]. CIESC Journal, 2016, 67(11): 4662-4670. | |
30 | Jansen J C, Gaag F J V D, Bekkum H V. Identification of ZSM-type and other 5-ring containing zeolites by i.r. spectroscopy[J]. Zeolites, 1984, 4(4): 369-372. |
31 | Ying Y P, Liu D H, Zhang W X, et al. High-flux graphene oxide membranes intercalated by metal-organic framework with highly selective separation of aqueous organic solution[J]. ACS Appl. Mater. Interfaces, 2017, 9: 1710-1718. |
32 | Liu G P, Gan L, Liu S N, et al. PDMS/ceramic composite membrane for pervaporation separation of acetone–butanol–ethanol (ABE) aqueous solutions and its application in intensification of ABE fermentation process[J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 162-172. |
33 | Wu X M, Zhang Q Q, Soyekwo F, et al.Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane[J]. AIChE Journal, 2016, 62(3): 842-851. |
34 | Beltran A B, Nisola G M, Choi S S, et al. Surface-functionalized silica nanoparticles as fillers in polydimethylsiloxane membrane for the pervaporative recovery of 1-butanol from aqueous solution[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(12): 2216-2226. |
35 | Cao K T, Jiang Z Y, Zhang X S, et al. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix[J]. Journal of Membrane Science, 2015, 490: 72-83. |
36 | Devi D A, Raju K V S N, Aminabhavi T M. Synthesis and characterization of moisture-cured polyurethane membranes and their applications in pervaporation separation of ethyl acetate/water azeotrope at 30℃[J]. Journal of Applied Polymer Science, 2007, 103(5): 3405-3414. |
37 | Moheb Shahrestani M, Moheb A, Ghiaci M. High performance dehydration of ethyl acetate/water mixture by pervaporation using NaA zeolite membrane synthesized by vacuum seeding method[J]. Vacuum, 2013, 92: 70-76. |
38 | Yuan H K, Ren J, Ma X H, et al. Dehydration of ethyl acetate aqueous solution by pervaporation using PVA/PAN hollow fiber composite membrane[J]. Desalination, 2011, 280(1/2/3): 252-258. |
39 | Xu Z, Liu G Z, Ye H, et al. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration[J]. Journal of Membrane Science, 2018, 563: 625-632. |
40 | Ma X H, Xu Z L, Ji C Q, et al. Characterization, separation performance, and model analysis of STPP-chitosan/PAN polyelectrolyte complex membranes[J]. Journal of Applied Polymer Science, 2011, 120(2): 1017-1026. |
[1] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[2] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[3] | 裴仁花, 王永洪, 张新儒, 李晋平. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914. |
[4] | 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
[5] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[6] | 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676. |
[7] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
[8] | 欧阳志鹏, 刘庭峰, 冷尔唯, 冯天毅, 曾建辉, 龚勋. 纤维素低氧环境下热解特性和糖类生成机制[J]. 化工学报, 2022, 73(3): 1351-1358. |
[9] | 靳卓, 王永洪, 张新儒, 白雪, 李晋平. Pebax/a-MoS2/MIP-202混合基质膜的制备及CO2分离性能[J]. 化工学报, 2022, 73(10): 4527-4538. |
[10] | 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381. |
[11] | 陈旭杰, 吕喜蕾, 史欢欢, 郑丽萍, 魏茜文, 田鹏辉, 蒋雨希, 吕秀阳. HBr-MgBr2催化己糖二酸脱水环合制备2,5-呋喃二甲酸的研究[J]. 化工学报, 2021, 72(9): 4658-4664. |
[12] | 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417. |
[13] | 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668. |
[14] | 李晓雪, 牛晓坡, 王庆法. 级孔Pt-Ni/ZSM-5对木质素衍生物加氢脱氧性能研究[J]. 化工学报, 2021, 72(5): 2626-2637. |
[15] | 任雪宇, 曹景沛, 姚乃瑜, 赵小燕, 冯晓博, 刘天龙, 赵云鹏. 模板法调控多级孔ZSM-5催化褐煤挥发分制备轻质芳烃的研究[J]. 化工学报, 2021, 72(11): 5620-5632. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||