1 |
Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489.
|
2 |
Zhang L H, Xu C B, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management, 2010, 51(5): 969-982.
|
3 |
王鹏, 龚勋, 张彪, 等. 基于离子液体再生的纤维素热解特性[J]. 化工学报, 2014, 65(12): 4793-4798.
|
|
Wang P, Gong X, Zhang B, et al. Pyrolysis characteristics of cellulose from ionic liquid regeneration[J]. CIESC Journal, 2014, 65(12): 4793-4798.
|
4 |
Menon V, Rao M L. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science, 2012, 38(4): 522-550.
|
5 |
毛明, 冷尔唯, 龚勋, 等. [Bmim]Cl中CrCl3-AlCl3催化纤维素降解制取5-羟甲基糠醛[J]. 化工学报, 2018, 69(2): 801-807.
|
|
Mao M, Leng E W, Gong X, et al. Conversion of cellulose into 5-hydroxymehylfurfural catalyzed by CrCl3-AlCl3 [J]. CIESC Journal, 2018, 69(2): 801-807.
|
6 |
冷尔唯, 龚勋, 张扬, 等. 纤维素热解机理研究进展: 以中间态纤维素为核心的纤维素演变[J]. 化工学报, 2018, 69(1): 239-248.
|
|
Leng E W, Gong X, Zhang Y, et al. Progress of cellulose pyrolysis mechanism: cellulose evolution based on intermediate cellulose[J]. CIESC Journal, 2018, 69(1): 239-248.
|
7 |
Roy P, Dias G. Prospects for pyrolysis technologies in the bioenergy sector: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 59-69.
|
8 |
Jahirul M, Rasul M, Chowdhury A, et al. Biofuels production through biomass pyrolysis—a technological review[J]. Energies, 2012, 5(12): 4952-5001.
|
9 |
Uddin M N, Techato K, Taweekun J, et al. An overview of recent developments in biomass pyrolysis technologies[J]. Energies, 2018, 11(11): 3115.
|
10 |
Kim K H, Brown R C, Bai X L. Partial oxidative pyrolysis of acid infused red oak using a fluidized bed reactor to produce sugar rich bio-oil[J]. Fuel, 2014, 130: 135-141.
|
11 |
Senneca O, Chirone R, Salatino P. A thermogravimetric study of nonfossil solid fuels (2): Oxidative pyrolysis and char combustion[J]. Energy & Fuels, 2002, 16(3): 661-668.
|
12 |
Anca-Couce A, Zobel N, Berger A, et al. Smouldering of pine wood: kinetics and reaction heats[J]. Combustion and Flame, 2012, 159(4): 1708-1719.
|
13 |
Branca C, Di Blasi C. Global interinsic kinetics of wood oxidation[J]. Fuel, 2004, 83(1): 81-87.
|
14 |
Shen D K, Ye J M, Xiao R, et al. TG-MS analysis for thermal decomposition of cellulose under different atmospheres[J]. Carbohydrate Polymers, 2013, 98(1): 514-521.
|
15 |
Zhao S H, Luo Y H, Zhang Y L, et al. Experimental investigation of rice straw and model compound oxidative pyrolysis by in situ diffuse reflectance infrared Fourier transform and coupled thermogravimetry-differential scanning calorimetry/mass spectrometry method[J]. Energy & Fuels, 2015, 29(7): 4361-4372.
|
16 |
Zhao S H, Zhang Y L, Su Y. Experimental investigation of rice straw oxidative pyrolysis process in a hot-rod reactor[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104646.
|
17 |
Amutio M, Lopez G, Aguado R, et al. Biomass oxidative flash pyrolysis: autothermal operation, yields and product properties[J]. Energy & Fuels, 2012, 26(2): 1353-1362.
|
18 |
Milhé M, van de Steene L, Haube M, et al. Autothermal and allothermal pyrolysis in a continuous fixed bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 102-111. .
|
19 |
Daouk E, van de Steene L, Paviet F, et al. Oxidative pyrolysis of wood chips and of wood pellets in a downdraft continuous fixed bed reactor[J]. Fuel, 2017, 196: 408-418.
|
20 |
Scott D S, Piskorz J, Radlein D, et al. Process for the production of anhydrosugars from lignin and cellulose containing biomass by pyrolysis[J]. Biotechnology Advances, 1995, 13(3): 589.
|
21 |
Kim K H, Bai X L, Rover M, et al. The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor[J]. Fuel, 2014, 124: 49-56.
|
22 |
Jiang S J, Hu X, Wu L P, et al. Oxidative pyrolysis of mallee wood biomass, cellulose and lignin[J]. Fuel, 2018, 217: 382-388.
|
23 |
王阳, 龚勋, 冷尔唯, 等. 基于苯甲酰化的纤维素热解过程中典型脱水糖的定量分析[J]. 化工学报, 2016, 67(6): 2519-2524.
|
|
Wang Y, Gong X, Leng E W, et al. Quantitative analysis of typical anhydro-sugars obtained during pyrolysis of cellulose based on benzoylation[J]. CIESC Journal, 2016, 67(6): 2519-2524.
|
24 |
冷尔唯, 张彪, 张坚, 等. 原糖和脱水糖模型化合物的快速热解特性研究[J]. 工程热物理学报, 2016, 37(10): 2225-2229.
|
|
Leng E W, Zhang B, Zhang J, et al. Characterizing the fast pyrolysis of oligosaccharides and anhydro-sugars as cellulose model compounds[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2225-2229.
|
25 |
王鹏, 张坚, 陈振国, 等. 基于XPS的纤维素热解焦表面结构分析[J]. 燃烧科学与技术, 2015, 21(4): 378-381.
|
|
Wang P, Zhang J, Chen Z G, et al. Surface structure of pyrolytic char of cellulose based on XPS analysis[J]. Journal of Combustion Science and Technology, 2015, 21(4): 378-381.
|
26 |
Gong X, Yu Y, Gao X P, et al. Formation of anhydro-sugars in the primary volatiles and solid residues from cellulose fast pyrolysis in a wire-mesh reactor[J]. Energy & Fuels, 2014, 28(8): 5204-5211.
|
27 |
Yu Y, Liu D W, Wu H W. Characterization of water-soluble intermediates from slow pyrolysis of cellulose at low temperatures[J]. Energy & Fuels, 2012, 26(12): 7331-7339.
|
28 |
Bradbury A G W, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11): 3271-3280.
|
29 |
Lédé J. Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 17-32.
|
30 |
Mesa-Pérez J M, Rocha J D, Barbosa-Cortez L A, et al. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor[J]. Applied Thermal Engineering, 2013, 56(1/2): 167-175.
|
31 |
冷尔唯. KCl和CaCl2催化不同结晶形态纤维素及其模型化合物的热解机理研究[D]. 武汉: 华中科技大学, 2019.
|
|
Leng E W. Mechanism study in the pyrolysis of cellulose with different crystallinity index and its model compounds under the catalytic effects of KCl and CaCl2 [D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
32 |
Leng E W, Wang Y, Gong X, et al. Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2263-2270.
|
33 |
Liu D W, Yu Y, Wu H W. Differences in water-soluble intermediates from slow pyrolysis of amorphous and crystalline cellulose[J]. Energy & Fuels, 2013, 27(3): 1371-1380.
|
34 |
Zhao S H, Bi X L, Sun R Y, et al. Density functional theory and experimental study of cellulose initial degradation stage under inert and oxidative atmosphere[J]. Journal of Molecular Structure, 2020, 1204: 127543.
|