化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1351-1358.DOI: 10.11949/0438-1157.20211355
欧阳志鹏1(),刘庭峰1,冷尔唯2,冯天毅1,曾建辉1,龚勋1(
)
收稿日期:
2021-09-22
修回日期:
2021-11-20
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
龚勋
作者简介:
欧阳志鹏(1998—),男,硕士研究生,基金资助:
Zhipeng OUYANG1(),Tingfeng LIU1,Erwei LENG2,Tianyi FENG1,Jianhui ZENG1,Xun GONG1(
)
Received:
2021-09-22
Revised:
2021-11-20
Online:
2022-03-15
Published:
2022-03-14
Contact:
Xun GONG
摘要:
在最小化二次反应的金属网反应器下对微晶纤维素进行低氧热解实验。采用带有脉冲安培检测的高性能阴离子交换色谱法(HPAEC-PAD)的Dionex ICS-6000离子色谱(IC)对热解后的产物水溶性中间态活性纤维素(WSIAC)和水溶性初生焦油(WSPT)的组成和分布进行分析。重点关注纤维素热解过程中几种脱水糖和糖聚物的生成转化规律。实验发现氧气通过促进中间态纤维素的生成来提前纤维素的分解。氧化气氛下,聚合度越高的脱水糖稳定性越差。氧气的存在一方面促进纤维二聚糖和纤维三聚糖生成,另一方面,它们的破碎或其他分解反应也在一定程度下受到氧气影响。
中图分类号:
欧阳志鹏, 刘庭峰, 冷尔唯, 冯天毅, 曾建辉, 龚勋. 纤维素低氧环境下热解特性和糖类生成机制[J]. 化工学报, 2022, 73(3): 1351-1358.
Zhipeng OUYANG, Tingfeng LIU, Erwei LENG, Tianyi FENG, Jianhui ZENG, Xun GONG. Pyrolysis characteristics and mechanism of carbohydrate formation of cellulose in low oxygen environment[J]. CIESC Journal, 2022, 73(3): 1351-1358.
图7 纤维素热解产生的水溶性中间态纤维素中脱水糖和糖聚物选择性
Fig.7 Selectivity of dehydrated sugars and glycopolymers in water-soluble intermediate cellulose produced by pyrolysis of cellulose
1 | Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489. |
2 | Zhang L H, Xu C B, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management, 2010, 51(5): 969-982. |
3 | 王鹏, 龚勋, 张彪, 等. 基于离子液体再生的纤维素热解特性[J]. 化工学报, 2014, 65(12): 4793-4798. |
Wang P, Gong X, Zhang B, et al. Pyrolysis characteristics of cellulose from ionic liquid regeneration[J]. CIESC Journal, 2014, 65(12): 4793-4798. | |
4 | Menon V, Rao M L. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science, 2012, 38(4): 522-550. |
5 | 毛明, 冷尔唯, 龚勋, 等. [Bmim]Cl中CrCl3-AlCl3催化纤维素降解制取5-羟甲基糠醛[J]. 化工学报, 2018, 69(2): 801-807. |
Mao M, Leng E W, Gong X, et al. Conversion of cellulose into 5-hydroxymehylfurfural catalyzed by CrCl3-AlCl3 [J]. CIESC Journal, 2018, 69(2): 801-807. | |
6 | 冷尔唯, 龚勋, 张扬, 等. 纤维素热解机理研究进展: 以中间态纤维素为核心的纤维素演变[J]. 化工学报, 2018, 69(1): 239-248. |
Leng E W, Gong X, Zhang Y, et al. Progress of cellulose pyrolysis mechanism: cellulose evolution based on intermediate cellulose[J]. CIESC Journal, 2018, 69(1): 239-248. | |
7 | Roy P, Dias G. Prospects for pyrolysis technologies in the bioenergy sector: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 59-69. |
8 | Jahirul M, Rasul M, Chowdhury A, et al. Biofuels production through biomass pyrolysis—a technological review[J]. Energies, 2012, 5(12): 4952-5001. |
9 | Uddin M N, Techato K, Taweekun J, et al. An overview of recent developments in biomass pyrolysis technologies[J]. Energies, 2018, 11(11): 3115. |
10 | Kim K H, Brown R C, Bai X L. Partial oxidative pyrolysis of acid infused red oak using a fluidized bed reactor to produce sugar rich bio-oil[J]. Fuel, 2014, 130: 135-141. |
11 | Senneca O, Chirone R, Salatino P. A thermogravimetric study of nonfossil solid fuels (2): Oxidative pyrolysis and char combustion[J]. Energy & Fuels, 2002, 16(3): 661-668. |
12 | Anca-Couce A, Zobel N, Berger A, et al. Smouldering of pine wood: kinetics and reaction heats[J]. Combustion and Flame, 2012, 159(4): 1708-1719. |
13 | Branca C, Di Blasi C. Global interinsic kinetics of wood oxidation[J]. Fuel, 2004, 83(1): 81-87. |
14 | Shen D K, Ye J M, Xiao R, et al. TG-MS analysis for thermal decomposition of cellulose under different atmospheres[J]. Carbohydrate Polymers, 2013, 98(1): 514-521. |
15 | Zhao S H, Luo Y H, Zhang Y L, et al. Experimental investigation of rice straw and model compound oxidative pyrolysis by in situ diffuse reflectance infrared Fourier transform and coupled thermogravimetry-differential scanning calorimetry/mass spectrometry method[J]. Energy & Fuels, 2015, 29(7): 4361-4372. |
16 | Zhao S H, Zhang Y L, Su Y. Experimental investigation of rice straw oxidative pyrolysis process in a hot-rod reactor[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104646. |
17 | Amutio M, Lopez G, Aguado R, et al. Biomass oxidative flash pyrolysis: autothermal operation, yields and product properties[J]. Energy & Fuels, 2012, 26(2): 1353-1362. |
18 | Milhé M, van de Steene L, Haube M, et al. Autothermal and allothermal pyrolysis in a continuous fixed bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 102-111. . |
19 | Daouk E, van de Steene L, Paviet F, et al. Oxidative pyrolysis of wood chips and of wood pellets in a downdraft continuous fixed bed reactor[J]. Fuel, 2017, 196: 408-418. |
20 | Scott D S, Piskorz J, Radlein D, et al. Process for the production of anhydrosugars from lignin and cellulose containing biomass by pyrolysis[J]. Biotechnology Advances, 1995, 13(3): 589. |
21 | Kim K H, Bai X L, Rover M, et al. The effect of low-concentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor[J]. Fuel, 2014, 124: 49-56. |
22 | Jiang S J, Hu X, Wu L P, et al. Oxidative pyrolysis of mallee wood biomass, cellulose and lignin[J]. Fuel, 2018, 217: 382-388. |
23 | 王阳, 龚勋, 冷尔唯, 等. 基于苯甲酰化的纤维素热解过程中典型脱水糖的定量分析[J]. 化工学报, 2016, 67(6): 2519-2524. |
Wang Y, Gong X, Leng E W, et al. Quantitative analysis of typical anhydro-sugars obtained during pyrolysis of cellulose based on benzoylation[J]. CIESC Journal, 2016, 67(6): 2519-2524. | |
24 | 冷尔唯, 张彪, 张坚, 等. 原糖和脱水糖模型化合物的快速热解特性研究[J]. 工程热物理学报, 2016, 37(10): 2225-2229. |
Leng E W, Zhang B, Zhang J, et al. Characterizing the fast pyrolysis of oligosaccharides and anhydro-sugars as cellulose model compounds[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2225-2229. | |
25 | 王鹏, 张坚, 陈振国, 等. 基于XPS的纤维素热解焦表面结构分析[J]. 燃烧科学与技术, 2015, 21(4): 378-381. |
Wang P, Zhang J, Chen Z G, et al. Surface structure of pyrolytic char of cellulose based on XPS analysis[J]. Journal of Combustion Science and Technology, 2015, 21(4): 378-381. | |
26 | Gong X, Yu Y, Gao X P, et al. Formation of anhydro-sugars in the primary volatiles and solid residues from cellulose fast pyrolysis in a wire-mesh reactor[J]. Energy & Fuels, 2014, 28(8): 5204-5211. |
27 | Yu Y, Liu D W, Wu H W. Characterization of water-soluble intermediates from slow pyrolysis of cellulose at low temperatures[J]. Energy & Fuels, 2012, 26(12): 7331-7339. |
28 | Bradbury A G W, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11): 3271-3280. |
29 | Lédé J. Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 17-32. |
30 | Mesa-Pérez J M, Rocha J D, Barbosa-Cortez L A, et al. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor[J]. Applied Thermal Engineering, 2013, 56(1/2): 167-175. |
31 | 冷尔唯. KCl和CaCl2催化不同结晶形态纤维素及其模型化合物的热解机理研究[D]. 武汉: 华中科技大学, 2019. |
Leng E W. Mechanism study in the pyrolysis of cellulose with different crystallinity index and its model compounds under the catalytic effects of KCl and CaCl2 [D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
32 | Leng E W, Wang Y, Gong X, et al. Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2263-2270. |
33 | Liu D W, Yu Y, Wu H W. Differences in water-soluble intermediates from slow pyrolysis of amorphous and crystalline cellulose[J]. Energy & Fuels, 2013, 27(3): 1371-1380. |
34 | Zhao S H, Bi X L, Sun R Y, et al. Density functional theory and experimental study of cellulose initial degradation stage under inert and oxidative atmosphere[J]. Journal of Molecular Structure, 2020, 1204: 127543. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[14] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[15] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 299
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 372
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||