化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 140-145.DOI: 10.11949/0438-1157.20201592
收稿日期:
2020-11-03
修回日期:
2021-01-18
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
王勤
作者简介:
唐靖轩(1996—),男,硕士研究生,基金资助:
TANG Jingxuan(),LIU Yilun,HE Wei,SHEN Xuzhu,WANG Qin(),CHEN Guangming
Received:
2020-11-03
Revised:
2021-01-18
Online:
2021-06-20
Published:
2021-06-20
Contact:
WANG Qin
摘要:
吸收式热泵是回收利用低品位热能的方式之一。在扩散吸收式热变换器中借由双进双出气泡泵引入扩散气体,以此代替机械泵,实现全热驱动。本文采用工质为水-甲酸钾-R134a,通过改变动力压头、发生温度和扩散气体流量,对扩散吸收式热变换器系统中气泡泵的输送性能进行动力压头分别为0.42和0.55 m的两组试验研究。其中制冷剂流量、气相流量、提升效率这3项参数的不确定度分别为0.06078 g/s、0.06081 g/s、1.64799。结果表明,提高温度与动力压头、降低扩散气体流量,均可增大气泡泵的提升效率,这些研究结果将为后续的气泡泵设计提供重要的参考依据。
中图分类号:
唐靖轩, 刘轶伦, 何巍, 沈旭柱, 王勤, 陈光明. 双进双出气泡泵输送性能[J]. 化工学报, 2021, 72(S1): 140-145.
TANG Jingxuan, LIU Yilun, HE Wei, SHEN Xuzhu, WANG Qin, CHEN Guangming. Pumping performance of bubble pump with dual entrances and dual exits[J]. CIESC Journal, 2021, 72(S1): 140-145.
图1 双进双出气泡泵输送性能研究试验装置流程A1—移动储液罐;A2—固定储液罐;B—溶液水冷器;C—发生器;D—提升管;E—第1级气液分离器;F—冷凝器;G—第2级气液分离器;H—无油压缩机;V1、V2、V3—旁通阀;V4、V5—储液罐阀门;1、2、3—质量流量计
Fig.1 Flow chart of test rig of pumping performance of bubble pump with dual entrances and exits
参数 | 测量仪器 | 量程 | 精度 |
---|---|---|---|
压力 | 压力传感器 | 0~2.5 MPa | 0.2% |
温度 | T型热电偶 | -100~100℃ | 0.2℃ |
流量 | 质量流量计 | 0~1360 kg/h | 0.5% |
功率 | 直流稳压电源 | 0~4000 W | 20 W |
充注量 | 电子天平 | 0~30 kg | 1 g |
表1 测量仪器规格
Table 1 Specifications of measuring instruments
参数 | 测量仪器 | 量程 | 精度 |
---|---|---|---|
压力 | 压力传感器 | 0~2.5 MPa | 0.2% |
温度 | T型热电偶 | -100~100℃ | 0.2℃ |
流量 | 质量流量计 | 0~1360 kg/h | 0.5% |
功率 | 直流稳压电源 | 0~4000 W | 20 W |
充注量 | 电子天平 | 0~30 kg | 1 g |
1 | 陈松, 杜垲. 吸收式热泵初步分析与研究[J]. 制冷技术, 2003, 23(3): 12-16. |
Chen S, Du K. Basic analysis and research on absorption heat pump [J]. Refrigeration Technology, 2003, 23(3): 12-16. | |
2 | 余龙清, 马锋, 胡学伟. 低温工业余热综合利用[J]. 资源节约与环保, 2018, (4): 13, 17. |
Yu L Q, Ma F, Hu X W. Comprehensive utilization of low temperature industrial waste heat [J]. Resources Economization & Environmental Protection, 2018, (4): 13, 17. | |
3 | 匡胜严, 侯俊杰, 谢吉平, 等. 太阳能溴化锂吸收式热泵应用分析[J]. 制冷技术, 2017, 37(6): 72-77. |
Kuang S Y, Hou J J, Xie J P, et al. Application analysis of solar LiBr absorption heat pump [J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 72-77. | |
4 | 隋军, 刘锋, 郭培军, 等. 低品位余热回收的立式降膜吸收式热变换器研究[J]. 制冷技术, 2015, 35(2): 8-12. |
Sui J, Liu F, Guo P J, et al. Study on vertical falling film absorption heat transformer for low grade waste heat recovery [J]. Chinese Journal of Refrigeration Technology, 2015, 35(2): 8-12. | |
5 | 李海燕, 刘静. 低品位余热利用技术的研究现状、困境和新策略[J]. 科技导报, 2010, 28(17): 112-117. |
Li H Y, Liu J. Current research status, difficulties and new strategy in utilization of low grade heat [J]. Science & Technology Review, 2010, 28(17): 112-117. | |
6 | von Platen B C, Munters C G. Refrigerator: US1685764 [P]. 1928. |
7 | 王勤, 龚磊, 陈光明, 等. 一种双气泡泵扩散吸收式热变换器: 102121762A [P]. 2011-07-13. |
Wang Q, Gong L, Chen G M, et al. Double-gas-bubble pump diffusion absorption type thermal converter: 102121762A [P]. 2011-07-13. | |
8 | 何巍. 用于扩散吸收式热变换器的气泡泵性能试验研究[D]. 杭州: 浙江大学, 2016. |
He W. Research on the performance of bubble pump used for the diffusion absorption heat transformer system [D]. Hangzhou: Zhejiang University, 2016. | |
9 | Wang S K, Liu Y L, Chen Y, et al. Experimental investigations on the temperature lift performance of a novel diffusion absorption heat transformer [J]. Energy, 2019, 170: 906-914. |
10 | 梁俣, 刘道平, 叶鹏. 气泡泵在制冷技术中的应用研究进展[J]. 制冷学报, 2014, 35(1): 58-65. |
Liang Y, Liu D P, Ye P. Research progress of bubble pump in refrigeration application [J]. Journal of Refrigeration, 2014, 35(1): 58-65. | |
11 | 朱发明, 刘道平, 杨亮, 等. 气泡泵在单压吸收制冷系统中的研究进展[J]. 制冷学报, 2017, 38(2): 65-75. |
Zhu F M, Liu D P, Yang L, et al. Research progress of bubble pump in single pressure absorption refrigeration system [J]. Journal of Refrigeration, 2017, 38(2): 65-75. | |
12 | 朱发明, 刘道平, 杨亮, 等. 均流式多管导流型气泡泵提升性能试验研究[J]. 制冷学报, 2018, 39(6): 84-90. |
Zhu F M, Liu D P, Yang L, et al. Experimental research on improving performance of guided bubble pump with multiple tubes with current equalizer [J]. Journal of Refrigeration, 2018, 39(6): 84-90. | |
13 | An L H, Liu D P, Chen Y J, et al. Theoretical and experimental study on the lifting performance of bubble pump with variable cross-section lift tube [J]. Applied Thermal Engineering, 2017, 111: 1265-1271. |
14 | Lin F L, Liu D P, Jiang D Q, et al. An experimental study on the performance of guided bubble pump with multiple tubes [J]. Applied Thermal Engineering, 2016, 106: 1052-1061. |
15 | 陈永军, 刘道平, 黄塬琳, 等. 变截面直立管气泡泵理论模型验证研究[J]. 太阳能学报, 2016, 37(4): 917-923. |
Chen Y J, Liu D P, Huang Y L, et al. Theoretical model validation study of variable cross-section upright tubular bubble pump [J]. Acta Energiae Solaris Sinica, 2016, 37(4): 917-923. | |
16 | 李华山, 王令宝, 卜宪标, 等. 提升管管径对有机工质气泡泵性能的影响分析[J]. 新能源进展, 2016, 4(1): 56-61. |
Li H S, Wang L B, Bu X B, et al. Effects of lift-tube diameter on performance of bubble pump with organic working fluids [J]. Advances in New and Renewable Energy, 2016, 4(1): 56-61. | |
17 | 郑晓倩, 刘道平, 陈永军, 等. 圆弧形导流式气泡泵的冷态试验研究[J]. 流体机械, 2015, 43(9): 58-62. |
Zheng X Q, Liu D P, Chen Y J, et al. Experimental study of circular arc form guided bubble pump under cold state [J]. Fluid Machinery, 2015, 43(9): 58-62. | |
18 | 陈永军, 刘道平, 王东昱, 等. 连续变截面直立管气泡泵工作特性试验研究[J]. 流体机械, 2014, 42(6): 61-64, 10. |
Chen Y J, Liu D P, Wang D Y, et al. Experimental study of working characteristic on continuous variable cross-sectional upright tube bubble pump [J]. Fluid Machinery, 2014, 42(6): 61-64, 10. | |
19 | 杨洪海, 谢宝军, 尹世永. 三角形通道热虹吸泵的性能研究[J]. 制冷与空调, 2010, 10(6): 45-47, 51. |
Yang H H, Xie B J, Yin S Y. Performance research on thermal siphon pump with triangle channel [J]. Refrigeration and Air-Conditioning, 2010, 10(6): 45-47, 51. | |
20 | 王强, 张小艳, 吴裕远, 等. 弦月形通道在太阳能空调系统中的强化传热研究[J]. 制冷学报, 2003, 24(1): 18-22. |
Wang Q, Zhang X Y, Wu Y Y, et al. Study on enhanced heat transfer of lunate channel in solar energy air-conditioning system [J]. Refrigeration Journal, 2003, 24(1): 18-22. | |
21 | 李帅, 刘道平, 杨亮, 等. 单管导流式气泡泵连续提升性能[J]. 工程热物理学报, 2019, 40(7): 1537-1545. |
Li S, Liu D P, Yang L, et al. Continuous lifting performance of guided bubble pump with single tube [J]. Journal of Engineering Thermophysics, 2019, 40(7): 1537-1545. | |
22 | 杨林强, 刘道平, 杨亮, 等. 沉浸比对均流式多管导流型气泡泵性能的影响[J]. 制冷学报, 2019, 40(1): 51-57. |
Yang L Q, Liu D P, Yang L, et al. Influence of different immersion ratios on the performance of guided bubble pump with current equalizer and multiple tubes [J]. Journal of Refrigeration, 2019, 40(1): 51-57. | |
23 | 辛岩, 刘道平, 林发龙, 等. 多管式气泡泵提升性能影响因素理论与试验研究[J]. 水资源与水工程学报, 2016, 27(4): 169-173. |
Xin Y, Liu D P, Lin F L, et al. Theory and experiment on effect factor of lifting performance of multiple-tube bubble pump [J]. Journal of Water Resources and Water Engineering, 2016, 27(4): 169-173. | |
24 | Rattner A S, Garimella S. Coupling-fluid heated bubble pump generators: experiments and model development [J]. Science and Technology for the Built Environment, 2015, 21(3): 332-347. |
25 | 李广, 刘道平, 陈翠云, 等. 气泡泵在冷态试验下的性能研究[J]. 低温与超导, 2012, 40(4): 44-47, 74. |
Li G, Liu D P, Chen C Y, et al. Performance study on the bubble pump in the cold test [J]. Cryogenics & Superconductivity, 2012, 40(4): 44-47, 74. | |
26 | 郑瑞芮, 王世宽, 卢炜, 等. R32/R134a混合制冷剂扩散吸收制冷系统试验研究[J]. 低温工程, 2018, (4): 20-24, 29. |
Zheng R R, Wang S K, Lu W, et al. Experimental research on performance of diffusion absorption refrigerator with R32/R134a mixed refrigerants [J]. Cryogenics, 2018, (4): 20-24, 29. | |
27 | 王勤, 刘轶伦, 卢炜, 等. R134a/R23-DMF溶液气泡泵输送性能试验[J]. 化工学报, 2018, 69(S2): 116-122. |
Wang Q, Liu Y L, Lu W, et al. Experiment on transport performance of bubble pumps with R134a/R23-DMF solutions [J]. CIESC Journal, 2018, 69(S2): 116-122. | |
28 | 戴雨辰, 陈飞, 李宏顺, 等. 新型扩散吸收式制冷中溶液再循环倍率对系统性能的影响[J]. 太阳能学报, 2017, 38(9): 2467-2473. |
Dai Y C, Chen F, Li H S, et al. Simulation study on the effect of solution recirculation ratio on performance of a novel diffusion absorption refrigeration system [J]. Acta Energiae Solaris Sinica, 2017, 38(9): 2467-2473. | |
29 | 高洪涛, 孟龙, 孔德见. 两级气泡泵与溴化锂制冷系统耦合特性试验研究[J]. 工程热物理学报, 2016, 37(5): 935-940. |
Gao H T, Meng L, Kong D J. Experimental investigation of coupling characteristics of double-stage bubble pump with lithium bromide refrigeration system [J]. Journal of Engineering Thermophysics, 2016, 37(5): 935-940. | |
30 | Gurevich B, Jelinek M, Levy A, et al. Performance of a set of parallel bubble pumps operating with a binary solution of R134a-DMAC [J]. Applied Thermal Engineering, 2015, 75: 724-730. |
31 | Benhmidene A, Chaouachi B. Investigation of pressure drop in the bubble pump of absorption-diffusion cycles [J]. Applied Thermal Engineering, 2019, 161: 114101. |
32 | Rattner A S, Garimella S. Simulation of Taylor flow evaporation for bubble-pump applications [J]. International Journal of Heat and Mass Transfer, 2018, 116: 231-247. |
33 | Wang Z N, Kang Y, Wang X C, et al. Investigation of the hydrodynamics of slug flow in airlift pumps [J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2391-2402. |
34 | 高洪涛, 刘昊然, 毛菲, 等. 溴化锂浓度及纳米颗粒对气泡泵流型及提升量影响的试验研究[J]. 大连海事大学学报, 2018, 44(3): 108-114. |
Gao H T, Liu H R, Mao F, et al. Experimental investigation on effect of LiBr concentration and nano-particle on flow pattern and lifting capacity of bubble pump [J]. Journal of Dalian Maritime University, 2018, 44(3): 108-114. | |
35 | 谢育博, 刘道平, 杨亮, 等. 气泡泵垂直提升管内气泡运动的CFD数值模拟研究[J]. 轻工机械, 2017, 35(2): 43-47. |
Xie Y B, Liu D P, Yang L, et al. CFD numerical simulation analysis of bubble motion in vertical lifting of bubble pump [J]. Light Industry Machinery, 2017, 35(2): 43-47. | |
36 | Belman-Flores J M, Rodríguez-Muñoz J L, Rubio-Maya C, et al. Energetic analysis of a diffusion-absorption system: a bubble pump under geometrical and operational conditions effects [J]. Applied Thermal Engineering, 2014, 71(1): 1-10. |
37 | 冯丽娜, 刘道平, 陈翠云, 等. 气泡泵冷态试验研究及性能参数的无因次分析[J]. 制冷学报, 2013, 34(2): 44-48. |
Feng L N, Liu D P, Chen C Y, et al. Experimental study on bubble pump under the cold state and non-dimensional analysis of system performance parameters [J]. Journal of Refrigeration, 2013, 34(2): 44-48. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[10] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[11] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[12] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[13] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[14] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[15] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||