1 |
陈建峰, 初广文, 邹海魁, 等. 超重力反应工程[M]. 北京: 化学工业出版社, 2020.
|
|
Chen J F, Chu G W, Zou H K, et al. HiGee Reaction Engineering[M]. Beijing: Chemical Industry Press, 2020.
|
2 |
Wenmakers P. Hairy Foam: Carbon nanofibers on solid foam as catalyst support—synthesis, mass transfer, and reactor modeling[D]. Eindhoven: Eindhoven University of Technology, 2009.
|
3 |
Stamatiou I K, Muller F L. Determination of mass transfer resistances of fast reactions in three-phase mechanically agitated slurry reactors[J]. AIChE Journal, 2017, 63(1): 273-282.
|
4 |
Kang S H, Bae J W, Cheon J Y, et al. Catalytic performance on iron-based Fischer-Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor[J]. Applied Catalysis B: Environmental, 2011, 103(1/2): 169-180.
|
5 |
Nam W, Kim J, Han G. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor[J]. Chemosphere, 2002, 47(9): 1019-1024.
|
6 |
Murthy B N, Ghadge R S, Joshi J B. CFD simulations of gas-liquid-solid stirred reactor: prediction of critical impeller speed for solid suspension[J]. Chemical Engineering Science, 2007, 62(24): 7184-7195.
|
7 |
van der Laan G P, Beenackers A A C M, Krishna R. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors[J]. Chemical Engineering Science, 1999, 54(21): 5013-5019.
|
8 |
Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593.
|
9 |
Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869.
|
10 |
Gavi E, Marchisio D L, Barresi A A. CFD modelling and scale-up of confined impinging jet reactors[J]. Chemical Engineering Science, 2007, 62(8): 2228-2241.
|
11 |
Gerbec J A, Magana D, Washington A, et al. Microwave-enhanced reaction rates for nanoparticle synthesis[J]. Journal of the American Chemical Society, 2005, 127(45): 15791-15800.
|
12 |
Liu W, Luo Y, Li Y B, et al. Scale-up of a rotating packed bed reactor with a mesh-pin rotor(Ⅱ): Mass transfer and application[J]. Industrial & Engineering Chemistry Research, 2020, 59(11): 5124-5132.
|
13 |
Cai Y, Luo Y, Chu G W, et al. NOx removal in a rotating packed bed: oxidation and enhanced absorption process optimization[J]. Separation and Purification Technology, 2019, 227: 115682.
|
14 |
Zhang D, Zhang P Y, Zou H K, et al. Application of HiGee process intensification technology in synthesis of petroleum sulfonate surfactant[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 508-513.
|
15 |
Du J T, Shi J, Sun Q, et al. High-gravity-assisted preparation of aqueous dispersions of monodisperse palladium nanocrystals as pseudohomogeneous catalyst for highly efficient nitrobenzene reduction[J]. Chemical Engineering Journal, 2020, 382: 122883.
|
16 |
Cortes Garcia G E, van der Schaaf J, Kiss A A. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156.
|
17 |
Ramshaw C, Mallinson R H. Mass transfer apparatus and its use: EP0002568[P].1979-6-27.
|
18 |
Luo Y, Chu G W, Zou H K, et al. Gas-liquid effective interfacial area in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16320-16325.
|
19 |
Su M J, Bai S, Luo Y, et al. Controllable wettability on stainless steel substrates with highly stable coatings[J]. Chemical Engineering Science, 2019, 195: 791-800.
|
20 |
Su M J, Luo Y, Chu G W, et al. Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure[J]. Chemical Engineering Science, 2020, 219: 115593.
|
21 |
Su M J, Le Y, Chu G W, et al. Intensification of droplet dispersion by using multilayer wire mesh and its application in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3584-3592.
|
22 |
Zhang J P, Luo Y, Chu G W, et al. A hydrophobic wire mesh for better liquid dispersion in air[J]. Chemical Engineering Science, 2017, 170: 204-212.
|
23 |
Zhang J P, Liu W, Luo Y, et al. Enhancing liquid droplet breakup by hydrophobic wire mesh: visual study and application in a rotating packed bed[J]. Chemical Engineering Science, 2019, 209: 115180.
|
24 |
Xu Y C, Li Y B, Liu Y Z, et al. Liquid jet impaction on the single-layer stainless steel wire mesh in a rotating packed bed reactor[J]. AIChE Journal, 2019, 65(6): e16597.
|
25 |
曹晶, 郭瑞生. 液化气脱硫醇装置提高碱液利用率研究[J]. 化工设计通讯, 2017, 43(11): 104,122.
|
|
Cao J, Guo R S. Study on utilization of alkali solution in LPG sweetening unit[J]. Chemical Engineering Design Communications, 2017, 43(11): 104,122.
|
26 |
Zhan Y Y, Shi J, Su M J, et al. Kinetics of catalytic oxidation of sodium ethyl mercaptide[J]. Chemical Engineering Science, 2020, 217: 115516.
|
27 |
Zhan Y Y, Wan Y F, Su M J, et al. Spent caustic regeneration in a rotating packed bed: reaction and separation process intensification[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14588-14594.
|
28 |
Zhan Y Y, Cai Y, Chu G W, et al. Intensified regeneration performance of spent caustic from LPG sweetening by HiGee reactor[J]. Chemical Engineering Research and Design, 2020, 156: 281-288.
|
29 |
Pei D Y, Su M J, Wang Y Y, et al. Process intensification of 2, 3, 6-trimethylphenol oxidation in a rotating packed bed reactor[J]. Chemical Engineering and Processing - Process Intensification, 2020, 149: 107842.
|
30 |
Gao X Y, Chu G W, Ouyang Y, et al. Gas flow characteristics in a rotating packed bed by particle image velocimetry measurement[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14350-14361.
|
31 |
高雪颖. 旋转填充床中气相流动与气固催化反应的研究[D]. 北京: 北京化工大学, 2017.
|
|
Gao X Y. Characteristics of gas flow and gas-solid catalytic reaction in a rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 2017.
|
32 |
Chen J F, Liu Y, Zhang Y. Control of product distribution of Fischer-Tropsch synthesis with a novel rotating packed-bed reactor: from diesel to light olefin[J]. Industrial & Engineering Chemistry Research, 2012, 51(25): 8700-8703.
|
33 |
Sang L, Luo Y, Chu G W, et al. A three-zone mass transfer model for a rotating packed bed[J]. AIChE Journal, 2019, 65(6): e16595.
|
34 |
桑乐, 罗勇, 初广文, 等. 超重力场内气液传质强化研究进展[J]. 化工学报, 2015, 66(1): 14-31.
|
|
Sang L, Luo Y, Chu G W, et al. Research progress of gas-liquid mass transfer enhancement in high gravity field[J]. CIESC Journal, 2015, 66(1): 14-31.
|
35 |
Swithenbank J. Heat and/or mass transfer processes and apparatus: US6354018[P]. 2002-03-12.
|
36 |
Liu Y, Luo Y, Chu G W, et al. 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 365-377.
|
37 |
Liu Y Z, Luo Y, Chu G W, et al. Liquid holdup and wetting efficiency in a rotating trickle-bed reactor[J]. AIChE Journal, 2019, 65(8): e16618.
|
38 |
Liu Y Z, Chu G W, Li Y B, et al. Liquid-solid mass transfer in a rotating trickle-bed reactor: mathematical modeling and experimental verification[J]. Chemical Engineering Science, 2020, 220: 115622.
|
39 |
Liu Y Z, Luo Y, Chu G W, et al. Monolithic catalysts with Pd deposited on a structured nickel foam packing[J]. Catalysis Today, 2016, 273: 34-40.
|
40 |
Liu Y Z, Li Z H, Chu G W, et al. Liquid-solid mass transfer in a rotating packed bed reactor with structured foam packing[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2507-2512.
|
41 |
刘亚朝. 旋转滴流床反应器的流体力学特性及催化加氢反应研究[D]. 北京: 北京化工大学, 2020.
|
|
Liu Y Z. Hydrodynamics in a rotating trickle-bed and its process intensification for catalytic hydrogenation[D]. Beijing: Beijing University of Chemical Technology, 2020.
|
42 |
Jiang L, Chu G W, Liu Y Z, et al. Preparation of cordierite monolithic catalyst for α-methylstyrene hydrogenation in a rotating packed bed reactor[J]. Chemical Engineering and Processing - Process Intensification, 2020, 150: 107882.
|
43 |
Wang D, Liu Y Z, Wang B J, et al. Process intensification of quasi-homogeneous catalytic hydrogenation in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1383-1392.
|
44 |
王迪. 超重力反应器蒽醌法制备双氧水研究[D]. 北京: 北京化工大学, 2020.
|
|
Wang D. Study on preparation of hydrogen peroxide by anthraquinone method in a rotating packed bed reactor[D]. Beijing: Beijing University of Chemical Technology, 2020.
|