1 |
McCarty P L. What is the best biological process for nitrogen removal: when and why?[J]. Environmental Science & Technology, 2018, 52(7): 3835-3841.
|
2 |
张建华. 生活污水短程硝化-厌氧氨氧化原位启动与性能强化机理[D]. 北京: 北京工业大学, 2020.
|
|
Zhang J H. In situ start-up and performance strengthening mechanism of partial nitrification and anammox process treating domestic sewage[D]. Beijing: Beijing University of Technology, 2020.
|
3 |
杨庆, 杨玉兵, 李健敏, 等. 短程硝化耦合厌氧氨氧化工艺处理低C/N比生活污水[J]. 化工学报, 2018, 69(8): 3635-3642.
|
|
Yang Q, Yang Y B, Li J M, et al. Partial nitrification coupled anaerobic ammonia oxidation process to treat low C/N domestic sewage[J]. CIESC Journal, 2018, 69(8): 3635-3642.
|
4 |
Xu X C, Wang G, Zhou L, et al. Start-up of a full-scale SNAD-MBBR process for treating sludge digester liquor[J]. Chemical Engineering Journal, 2018, 343: 477-483.
|
5 |
陈小珍, 汪晓军, Chayangkun Karasuta, 等. 反硝化-高效部分亚硝化-厌氧氨氧化工艺处理老龄垃圾渗滤液[J]. 环境科学, 2020, 41(1): 345-352.
|
|
Chen X Z, Wang X J, Chayangkun K, et al. Nitrogen removal from mature landfill leachate via denitrification-partial nitritation-ANAMMOX based on a zeolite biological aerated filter[J]. Environmental Science, 2020, 41(1): 345-352.
|
6 |
Cao Y S, van Loosdrecht M C M, Daigger G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383.
|
7 |
汪晓军, 陈永兴, 陈振国. 厌氧氨氧化及其处理低碳氮比氨氮废水的研究进展[J]. 工业水处理, 2022, 42(11): 25-31.
|
|
Wang X J, Chen Y X, Chen Z G. Anaerobic ammonia oxidation and its research progress for the treatment of low C/N ratio ammonia nitrogen wastewater[J]. Industrial Water Treatment, 2022, 42(11): 25-31.
|
8 |
Li X J, Sun S, Yuan H Y, et al. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: long-term performance and microbial community dynamics[J]. Water Research, 2017, 125: 298-308.
|
9 |
Zhang J H, Zhang Q, Li X Y, et al. Rapid start-up of partial nitritation and simultaneously phosphorus removal (PNSPR) granular sludge reactor treating low-strength domestic sewage[J]. Bioresource Technology, 2017, 243: 660-666.
|
10 |
秦彦荣, 袁忠玲, 张明, 等. 部分亚硝化-厌氧氨氧化协同反硝化处理生活污水脱氮除碳[J]. 环境科学, 2021, 42(10): 4853-4863.
|
|
Qin Y R, Yuan Z L, Zhang M, et al. Partial nitritation and anaerobic ammonia oxidation synergistic denitrification to remove nitrogen and carbon from domestic sewage[J]. Environmental Science, 2021, 42(10): 4853-4863.
|
11 |
Ding S Z, Bao P, Wang B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339: 180-188.
|
12 |
Zhang J H, Miao Y Y, Sun Y W, et al. An effective strategy for in situ start-up of mainstream anammox process treating domestic sewage[J]. Bioresource Technology, 2021, 339: 125525.
|
13 |
Oehmen A, Keller-Lehmann B, Zeng R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1-2): 131-136.
|
14 |
Miao Y Y, Peng Y Z, Zhang L, et al. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios[J]. Chemical Engineering Journal, 2018, 334: 664-672.
|
15 |
Gu S B, Wang S Y, Yang Q, et al. Start up partial nitrification at low temperature with a real-time control strategy based on blower frequency and pH[J]. Bioresource Technology, 2012, 112: 34-41.
|
16 |
Kouba V, Vejmelkova D, Proksova E, et al. High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pretreatment[J]. Environmental Science & Technology, 2017, 51(19): 11029-11038.
|
17 |
Wang X X, Wang S Y, Xue T L, et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200.
|
18 |
Smolders G J, van der Meij J, van Loosdrecht M C, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994, 43(6): 461-470.
|
19 |
Zeng R J, van Loosdrecht M C M, Yuan Z G, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering, 2003, 81(1): 92-105.
|
20 |
Smolders G J F, van der Meij J, van Loosdrecht M C M, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotechnology and Bioengineering, 1994, 44(7): 837-848.
|
21 |
Zhang J H, Miao Y Y, Zhang Q, et al. Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: microbial community and EPS analysis[J]. Bioresource Technology, 2020, 297: 122459.
|
22 |
Mao Y P, Xia Y, Wang Z P, et al. Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data[J]. Applied Microbiology and Biotechnology, 2014, 98(15): 6885-6895.
|
23 |
Khan S T, Horiba Y, Yamamoto M, et al. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach[J]. Applied and Environmental Microbiology, 2002, 68(7): 3206-3214.
|
24 |
Liang B, Wang L Y, Mbadinga S M, et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation[J]. AMB Express, 2015, 5(1): 117.
|
25 |
Xia Y, Kong Y H, Thomsen T R, et al. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing Saprospiraceae ("Candidatus Epiflobacter" spp.) in activated sludge[J]. Applied and Environmental Microbiology, 2008, 74(7): 2229-2238.
|
26 |
Zhao W H, Bi X J, Peng Y Z, et al. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: metabolic mechanisms, applications and influencing factors[J]. Chemosphere, 2022, 307: 135675.
|
27 |
Reino C, Suárez-Ojeda M E, Pérez J, et al. Kinetic and microbiological characterization of aerobic granules performing partial nitritation of a low-strength wastewater at 10℃[J]. Water Research, 2016, 101: 147-156.
|
28 |
Ducey T F, Vanotti M B, Shriner A D, et al. Characterization of a microbial community capable of nitrification at cold temperature[J]. Bioresource Technology, 2010, 101(2): 491-500.
|
29 |
Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894.
|
30 |
Teng Z D, Shao W, Zhang K Y, et al. Pb biosorption by Leclercia adecarboxylata: protective and immobilized mechanisms of extracellular polymeric substances[J]. Chemical Engineering Journal, 2019, 375: 122113.
|
31 |
Miao L, Zhang Q, Wang S Y, et al. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate[J]. Bioresource Technology, 2018, 249: 108-116.
|
32 |
Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623-633.
|
33 |
Zhang Z Z, Cheng Y F, Liu Y Y, et al. Deciphering the evolution characteristics of extracellular microbial products from autotrophic and mixotrophic anammox consortia in response to nitrogen loading variations[J]. Environment International, 2019, 124: 501-510.
|
34 |
Gu C C, Gao P, Yang F, et al. Characterization of extracellular polymeric substances in biofilms under long-term exposure to ciprofloxacin antibiotic using fluorescence excitation-emission matrix and parallel factor analysis[J]. Environmental Science and Pollution Research, 2017, 24(15): 13536-13545.
|
35 |
Gilbert E M, Agrawal S, Schwartz T, et al. Comparing different reactor configurations for partial nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81: 92-100.
|
36 |
Lackner S, Welker S, Gilbert E M, et al. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater[J]. Water Science and Technology, 2015, 72(8): 1358-1363.
|