化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3716-3727.doi: 10.11949/0438-1157.20210044

• 分离工程 • 上一篇    下一篇

二苯并-18-冠醚-6/聚醚嵌段酰胺膜富集水中苯酚性能研究

方丽君1(),王景梅1,林巧靖1,陈建华1,2(),杨谦1,2   

  1. 1.闽南师范大学化学化工与环境学院,福建 漳州 363000
    2.闽南师范大学,福建省现代分离分析科学与技术重点实验室,福建 漳州 363000
  • 收稿日期:2021-01-11 修回日期:2021-04-28 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 陈建华 E-mail:809410946@qq.com;fjptcjh@126.com
  • 作者简介:方丽君(1994—),女,硕士研究生,809410946@qq.com
  • 基金资助:
    国家自然科学基金项目(21676133)

Enrichment of phenol in water by dibenzo-18-crown ether-6/polyether block amide membrane

FANG Lijun1(),WANG Jingmei1,LIN Qiaojing1,CHEN Jianhua1,2(),YANG Qian1,2   

  1. 1.College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, Fujian, China
    2.Fujian Provincial Key Laboratory of Modern Separation and Analysis Science and Technology, Minnan Normal University, Zhangzhou 363000, Fujian, China
  • Received:2021-01-11 Revised:2021-04-28 Published:2021-07-05 Online:2021-07-05
  • Contact: CHEN Jianhua E-mail:809410946@qq.com;fjptcjh@126.com

摘要:

为提高聚醚嵌段酰胺 (PEBA)膜对水中苯酚的选择分离性能,采用二苯并-18-冠醚-6 (CE) 对PEBA膜进行改性制备了PEBA/CE渗透蒸发膜。通过FT-IR、SEM表征证实了CE与PEBA紧密结合且CE均匀分布在膜表面;AFM表征表明CE的修饰有效地提高了膜表面与苯酚的接触面积;水接触角测试表明CE的修饰极大地提高了PEBA/CE膜的疏水性。同时系统地研究了膜中CE含量、原料液苯酚浓度、进料温度对膜渗透汽化性能的影响,结果表明CE能显著提高PEBA膜对苯酚的选择性,在料液苯酚为0.8%(质量)及70℃操作温度条件下,当CE 的添加量为PEBA的6%(质量)时,PEBA/CE-6膜的分离因子和渗透通量分别为23.34和494.40 g/(m2·h),远超PEBA膜性能[分离因子8.46,总渗透通量547.48 g/(m2·h)]。长期性能稳定性测试表明所制备PEBA/CE-6膜具有良好稳定性,具有较好的工业运用潜力。

关键词: 渗透汽化, 聚醚嵌段酰胺, 二苯并-18-冠醚-6, 苯酚

Abstract:

In this study, to improve the selectivity separation performance of polyether block amide (PEBA) membrane for phenol in water, dibenzo-18-crown ether-6 (CE) was used to modify the PEBA membrane. FT-IR and SEM characterization confirmed that the CE was closely combined with PEBA and the CE was evenly distributed on the membrane surface. AFM characterization showed that CE modification effectively improved the contact area between the membrane surface and phenol. Water contact angle test showed that CE modification greatly improved the hydrophobicity of PEBA /CE membrane. At the same time, the effects of CE content, feed phenol concentration and feed temperature on pervaporation performance of PEBA/CE were systematically studied. The results show that CE can significantly improve the selectivity of PEBA/CE membrane to phenol in water. When the feed phenol concentration is 0.8%(mass) and the operating temperature is 70℃, the separation factor and permeation flux of PEBA/CE-6 membrane (CE content 6%(mass) of PEBA) are 23.34 and 494.40 g/(m2·h), which is far exceeding pure PEBA membrane performance (separation factor 8.46, total permeation flux 547.48 g/(m2·h). The prepared PEBA/CE-6 membranes have good stability and potential industrial application value.

Key words: pervaporation, polyether block amide, dibenzo-18-crown ether-6, phenol

中图分类号: 

  • TQ 028.8

图1

聚醚嵌段酰胺(a)和二苯并18-冠醚-6(b)的分子结构"

图2

PEBA/CE膜分离苯酚/水的机理"

图3

样品的红外光谱"

图4

二苯并-18-冠醚-6的SEM图"

图5

PEBA/CE膜的SEM图"

图6

PEBA/CE膜断面的SEM图"

图7

PEBA/CE-6膜在渗透汽化前(a)和渗透汽化后(b)的SEM图"

图8

PEBA/CE膜的AFM图"

图9

冠醚含量对PEBA/CE膜表面接触角的影响"

图10

在0.8%(质量)苯酚溶液、料液温度为70℃下冠醚含量对PEBA/CE 膜溶胀性的影响"

图11

冠醚含量对PEBA/CE膜吸附选择性及扩散选择性的影响"

图12

冠醚含量对PEBA/CE膜渗透汽化性能的影响"

图13

料液温度对PEBA/CE-0和PEBA/CE-6膜渗透汽化性能的影响总渗透通量(a); 分离因子(b); 料液温度对 PEBA/CE-0膜通量的影响(c); 料液温度对PEBA/CE-6膜通量的影响(d)"

图14

料液浓度对PEBA/CE-6膜渗透汽化性能的影响"

图15

PEBA/CE-6膜对苯酚/水分离长期性实验"

1 Babich H, Davis D L. Phenol: a review of environmental and health risks[J]. Regulatory Toxicology and Pharmacology, 1981, 1(1): 90-109.
2 盛怡. 苯酚的危害及应对策略[J]. 化工管理, 2019, (14): 25-26.
Sheng Y. The harm of phenol and countermeasures [J]. Chemical Enterprise Management, 2019, (14): 25-26.
3 王红娟, 奚红霞, 夏启斌, 等. 含酚废水处理技术的现状与开发前景[J]. 工业水处理, 2002, 22(6): 6-9.
Wang H J, Xi H X, Xia Q B, et al. Present situation and future development of phenol-containing wastewater treatment[J]. Industrial Water Treatment, 2002, 22(6): 6-9.
4 Jeong Y S, Chung J S. Simultaneous removal of COD, thiocyanate, cyanide and nitrogen from coal process wastewater using fluidized biofilm process[J]. Process Biochemistry, 2006, 41(5): 1141-1147.
5 Araki S, Gondo D, Imasaka S, et al. Permeation properties of organic compounds from aqueous solutions through hydrophobic silica membranes with different functional groups by pervaporation[J]. Journal of Membrane Science, 2016, 514: 458-466.
6 高超, 王启山. 吸附法处理含酚废水的研究进展[J]. 水处理技术, 2011, 37(1): 1-4.
Gao C, Wang Q S. Progresses of phenol wastewater based on adsorption method[J]. Technology of Water Treatment, 2011, 37(1): 1-4.
7 Tri N L M, Thang P Q, van Tan L, et al. Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite[J]. Journal of Water Process Engineering, 2020, 33: 101070.
8 Wu D S, Chen G Q, Hu B S, et al. Feasibility and energy consumption analysis of phenol removal from salty wastewater by electro-electrodialysis[J]. Separation and Purification Technology, 2019, 215: 44-50.
9 Guo C, Cao Q, Chen B K, et al. Development of synergistic extraction process for highly efficient removal of phenols from coal gasification wastewater[J]. Journal of Cleaner Production, 2019, 211: 380-386.
10 Ye H, Zhang X, Zhao Z X, et al. Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water[J]. Iranian Polymer Journal, 2017, 26(3): 193-203.
11 张时雨, 邹昀, 韦藤幼, 等. β-环糊精/聚醚共聚乙酰胺填充膜的制备及渗透汽化分离水中微量苯酚[J]. 化工学报, 2016, 67(11): 4662-4670.
Zhang S Y, Zou Y, Wei T Y, et al. Preparation of β-cyclodextrin filled PEBA membranes and pervaporation separation of phenol from dilute solution[J]. CIESC Journal, 2016, 67(11): 4662-4670.
12 左成业, 涂睿, 丁晓斌, 等. PDMS复合膜回收酯化反应废水中的异丁醇[J]. 化工学报, 2020, 71(9): 4189-4199.
Zuo C Y, Tu R, Ding X B, et al. DMS composite membrane for recovery of isobutanol in esterification wastewater[J]. CIESC Journal, 2020, 71(9): 4189-4199.
13 那沙沙, 李卫星, 邢卫红. 无机杂化海藻酸钠渗透汽化膜的制备与分离性能对比[J]. 化工学报, 2016, 67(9): 3730-3737.
Na S S, Li W X, Xing W H. Development of inorganic nano particles modified sodium alginate hybrid membranes for pervaporation[J]. CIESC Journal, 2016, 67(9): 3730-3737.
14 Song Y M, Jiang Z Y, Gao B X, et al. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration[J]. Chemical Engineering Science, 2018, 185: 231-242.
15 Hao X G, Pritzker M, Feng X S. Use of pervaporation for the separation of phenol from dilute aqueous solutions[J]. Journal of Membrane Science, 2009, 335(1/2): 96-102.
16 Li D, Yao J, Sun H, et al. Recycling of phenol from aqueous solutions by pervaporation with ZSM-5/PDMS/PVDF hollow fiber composite membrane[J]. Applied Surface Science, 2018, 427: 288-297.
17 王敏敏, 张新儒, 李馨然, 等. PEBA/MCM-41杂化膜的制备及其对苯酚/水渗透汽化分离性能的研究[J]. 膜科学与技术, 2015, 35(6): 40-47.
Wang M M, Zhang X R, Li X R, et al. Preparation of hybrid PEBA/MCM-41 membranes and its pervaporation performance for separating phenol/water mixture[J]. Membrane Science and Technology, 2015, 35(6): 40-47.
18 Ding C, Zhang X R, Li C C, et al. ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency[J]. Separation and Purification Technology, 2016, 166: 252-261.
19 Khan R, Ul Haq I, Mao H, et al. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution[J]. Separation and Purification Technology, 2021, 256: 117804.
20 马克. PDMS渗透蒸发膜的制备及其处理含酚废水的研究[D]. 上海: 东华大学, 2010.
Ma K. Study on the preparation and phenols wastewater treatment of PDMS pervaporation membranes[D]. Shanghai: Donghua University, 2010.
21 王维, 姜雪迎, 李悦, 等. 亲水型ZSM-5分子筛填充PVA膜及分离乙酸乙酯/水的应用[J]. 化工学报, 2020, 71(8): 3807-3818.
Wang W, Jiang X Y, Li Y, et al. Application of PVA membrane filled with hydrophilic ZSM-5 molecular sieve on separation of water from ethyl acetate[J]. CIESC Journal, 2020, 71(8): 3807-3818.
22 张锐, 邵琦, 张华宇, 等. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327.
Zhang R, Shao Q, Zhang H Y, et al. Fabrication of boron-doped hybrid silica membranes for pervaporation desalination[J]. CIESC Journal, 2021, 72(4): 2317-2327.
23 杨同华, 姜延林, 陈桂英, 等. 二苯并-18冠-6的热中子散射谱和红外光谱[J]. 原子能科学技术, 1986, 20(3): 376-378.
Yang T H, Jiang Y L, Chen G Y, et al. Thermal neutron scattering and infrared spectrum for dibenzo-18-crown-6[J]. Atomic Energy Science and Technology, 1986, 20(3): 376-378.
24 付新梅, 汪磊, 戴树桂. 红外光谱法和量子化学法对离子液体提取水中壬基酚的机理研究[J]. 光谱学与光谱分析, 2011, 31(3): 625-629.
Fu X M, Wang L, Dai S G. Mechanism study on the extraction of nonylphenol by ionic liquids in water through IR spectroscopy and quantum chemical calculation[J]. Spectroscopy and Spectral Analysis, 2011, 31(3): 625-629.
25 Amirkhani F, Mosadegh M, Asghari M, et al. The beneficial impacts of functional groups of CNT on structure and gas separation properties of PEBA mixed matrix membranes[J]. Polymer Testing, 2020, 82: 106285.
26 Lalia B S, Ahmed F E, Shah T, et al. Electrically conductive membranes based on carbon nanostructures for self-cleaning of biofouling[J]. Desalination, 2015, 360: 8-12.
27 Baker R W. Membrane Technology and Applications[M]. Chichester, UK: John Wiley & Sons Ltd., 2012.
28 Bai Y X, Dong L L, Zhang C F, et al. ZIF-8 filled polydimethylsiloxane membranes for pervaporative separation of n-butanol from aqueous solution[J]. Separation Science and Technology, 2013, 48(17): 2531-2539.
29 Feng X S, Huang R Y M. Concentration polarization in pervaporation separation processes[J]. Journal of Membrane Science, 1994, 92(3): 201-208.
30 Groß A, Heintz A. Sorption isotherms of aromatic compounds in organophilic polymer membranes used in pervaporation[J]. Journal of Solution Chemistry, 1999, 28(10): 1159-1174.
31 Borisov I L, Kujawska A, Knozowska K, et al. Influence of feed flow rate, temperature and feed concentration on concentration polarization effects during separation of water-methyl acetate solutions with high permeable hydrophobic pervaporation PDMS membrane[J]. Journal of Membrane Science, 2018, 564: 1-9.
32 Shao P, Huang R Y M. Polymeric membrane pervaporation[J]. Journal of Membrane Science, 2007, 287(2): 162-179.
[1] 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417.
[2] 黄文媛, 孙士杰, 唐宏震, 苏智芳, 钟秦迪, 刘幽燕, 李青云. 聚氨酯泡沫固定化Alcaligenes sp.DN25去除苯酚的研究[J]. 化工学报, 2021, 72(5): 2783-2791.
[3] 李超凡, 温玉娟, 曹楠, 孙东, 宋晓明, 杨悦锁. 耐低温对硝基苯酚降解菌的降解动力学研究[J]. 化工学报, 2021, 72(3): 1692-1701.
[4] 周毅,王永洪,张新儒,李晋平. PEBA/氮硫共掺杂多孔碳球混合基质膜的制备及CO2分离性能研究[J]. 化工学报, 2021, 72(10): 5237-5246.
[5] 左成业, 涂睿, 丁晓斌, 邢卫红. PDMS复合膜回收酯化反应废水中的异丁醇[J]. 化工学报, 2020, 71(9): 4189-4199.
[6] 马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353.
[7] 杨霁豪,耿莉莉,叶松寿,谢建榕,张诺伟,陈秉辉. 稳定高效Ru/TiO2-ZrO2催化剂处理苯酚磺酸废水[J]. 化工学报, 2020, 71(12): 5561-5567.
[8] 洪迪昆, 操政, 杨昌敏, 刘亮, 郭欣. 钙催化苯酚反应的分子动力学模拟[J]. 化工学报, 2019, 70(5): 1788-1794.
[9] 王家德, 袁通斌, 周丹飞, 周栩乐, 甘永平. 基于原位红外光谱的水相苯酚电氧化机理研究[J]. 化工学报, 2019, 70(12): 4821-4827.
[10] 金浩, 陆佳伟, 汤吉海, 张竹修, 费兆阳, 刘清, 陈献, 崔咪芬, 乔旭. 带侧线反应精馏-渗透汽化生产乙酸乙酯集成过程模拟与分析[J]. 化工学报, 2018, 69(8): 3469-3478.
[11] 岳东敏, 张欠之, 孙德, 李冰冰, 毛钦烨, 彭从康. PVA/SO42--AAO催化-渗透汽化双功能复合膜合成乙酸乙酯[J]. 化工学报, 2018, 69(6): 2775-2781.
[12] 张杏梅, 胡文玲, 孙鹤翔, 韩小龙, 王玉琪. 活性炭填充PEG/PVDF杂化膜的脱硫性能[J]. 化工学报, 2018, 69(2): 866-872.
[13] 王洋, 庄黎伟, 马晓华, 许振良, 王志. 中空纤维膜渗透汽化过程中Dean涡强化传质的CFD模拟[J]. 化工学报, 2018, 69(11): 4655-4662.
[14] 王倩, 张新儒, 王永洪, 侯蒙杰, 张桃, 李龙, 刘成岑. 渗透汽化-结晶耦合分离稀溶液中的香兰素[J]. 化工学报, 2017, 68(8): 3126-3132.
[15] 李雷, 周峰, 尧超群, 陈光文. 微反应器内制备4-(6-羟基己氧基)苯酚工艺[J]. 化工学报, 2017, 68(6): 2336-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[2] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[3] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[4] 宋宝东, 丁辉, 吴金川, Hayashi Y., Talukder MMR, 王世昌. 表面活性剂包衣Candida rugosa脂肪酶在无溶剂下油水两相体系中催化橄榄油水解[J]. CIESC Journal, 2003, 11(5): 601 -603 .
[5] 张秀莉, 张卫东, 郝新敏, 张慧峰, 张泽廷, 张建春. PTFE多孔膜气体渗透数学模型和膜孔结构的影响[J]. CIESC Journal, 2003, 11(4): 383 -387 .
[6] 张旭, 杨燕华, 张成芳, 王军. MDEA与哌嗪、二乙醇胺混合溶液吸收二氧化碳速率研究[J]. CIESC Journal, 2003, 11(4): 408 -413 .
[7] 王延敏, 姚平经. 利用人工神经网络和遗传算法对热偶精馏过程进行模拟优化[J]. CIESC Journal, 2003, 11(3): 307 -311 .
[8] 唐松涛, 李定凯, 吕子安, 沈幼庭. 伴有生物质热解的流化床中的混沌传递现象[J]. CIESC Journal, 2003, 11(3): 358 -361 .
[9] 郭诤, 张根旺, 孙彦. 高纯度共轭亚油酸的规模化制备及其异构体的鉴定[J]. CIESC Journal, 2003, 11(2): 130 -135 .
[10] 宋宝东, 邢爱华, 吴金川, 王世昌, . 表面活性剂包衣Candida rugosa脂肪酶在异辛烷中的稳定性[J]. CIESC Journal, 2003, 11(2): 217 -219 .