化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3345-3353.DOI: 10.11949/0438-1157.20200143
马珊宏1(),叶枫2,王燕鸿2,郎雪梅2,樊栓狮2,李刚2()
收稿日期:
2020-02-15
修回日期:
2020-04-16
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
李刚
作者简介:
马珊宏(1994—),男,硕士研究生,基金资助:
Shanhong MA1(),Feng YE2,Yanhong WANG2,Xuemei LANG2,Shuanshi FAN2,Gang LI2()
Received:
2020-02-15
Revised:
2020-04-16
Online:
2020-07-05
Published:
2020-07-05
Contact:
Gang LI
摘要:
在水热条件下通过无模板剂法合成了连续的ZSM-5沸石膜,并将其用于生物油的渗透汽化以进行高效脱水分离。ZSM-5沸石膜在强酸性、多组分的生物油体系中保持了很好的化学稳定性和优异的分离选择性,但在分离过程中面临着较强的膜污染问题,导致了膜通量的大幅下降。ZSM-5沸石膜的再生研究表明,膜的渗透通量随着再生温度的升高而逐渐提高。当再生温度为220℃时,ZSM-5沸石膜的渗透通量可以恢复至初始的88%。再生的机理研究表明,ZSM-5沸石膜中大量的晶内孔在生物油体系中极易被污染,从而导致渗透通量迅速下降;而相对较大的晶间孔却难以被完全堵塞,水分子在被污染的ZSM-5沸石膜中主要通过晶间孔进行渗透。上述结果表明,通过合理调控ZSM-5沸石膜的晶间孔的数量和尺寸大小可有效提升ZSM-5沸石膜在生物油中的渗透汽化脱水分离性能。
中图分类号:
马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353.
Shanhong MA, Feng YE, Yanhong WANG, Xuemei LANG, Shuanshi FAN, Gang LI. Permeation properties and regeneration of a ZSM-5 zeolite membrane for bio-oil dehydration[J]. CIESC Journal, 2020, 71(7): 3345-3353.
图2 载体(a)、ZSM-5晶种(b)、经生物油处理后ZSM-5晶种(c)、ZSM-5晶种层(d)和ZSM-5沸石膜(e)的XRD谱图
Fig.2 XRD patterns of the support (a), ZSM-5 zeolite seeds (b), bio-oil treated ZSM-5 seeds (c), ZSM-5 seeded support (d) and ZSM-5 zeolite membrane (e)
时间/h | 渗透通量/(kg·m-2·h-1) | 渗透侧水含量/% (质量) |
---|---|---|
1 | 0.445 | 97.7 |
6 | 0.093 | 99.0 |
12 | 0.038 | 95.9 |
18 | 0.038 | 99.1 |
24 | 0.037 | 98.2 |
30 | 0.036 | 98.8 |
36 | 0.037 | 99.1 |
表1 不同时间下ZSM-5沸石膜在30℃生物油中的渗透汽化脱水性能
Table 1 Time course of the pervaporation performance of the ZSM-5 zeolite membrane for bio-oil dehydration at 30℃
时间/h | 渗透通量/(kg·m-2·h-1) | 渗透侧水含量/% (质量) |
---|---|---|
1 | 0.445 | 97.7 |
6 | 0.093 | 99.0 |
12 | 0.038 | 95.9 |
18 | 0.038 | 99.1 |
24 | 0.037 | 98.2 |
30 | 0.036 | 98.8 |
36 | 0.037 | 99.1 |
图4 ZSM-5沸石膜再生前后在纯水体系中的渗透汽化性能的温度依存性
Fig.4 Temperature dependence of pervaporation performance of the fresh and regenerated ZSM-5 membrane for pure water system
图5 ZSM-5沸石膜再生前后在生物油体系中的渗透汽化性能的温度依存性
Fig.5 Temperature dependence of pervaporation performance of the fresh and regenerated ZSM-5 membrane for bio-oil system
ZSM-5 沸石膜 | 纯水体系 | 生物油体系 | ||
---|---|---|---|---|
k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | |
新膜 | 1.14×10-5 | -6.82 | 1.11×10-8 | -17.99 |
R-140 | 1.29×10-6 | -11.47 | 8.72×10-10 | -23.28 |
R-180 | 1.45×10-6 | -11.47 | 1.65×10-9 | -22.77 |
R-220 | 2.89×10-6 | -9.98 | 4.58×10-9 | -20.16 |
表2 ZSM-5沸石膜再生前后在纯水和生物油体系中水的渗透活化能和指前因子
Table 2 Activation energies and pre-exponential factors for water permeation through the fresh and regenerated ZSM-5 membrane for pure water and bio-oil systems
ZSM-5 沸石膜 | 纯水体系 | 生物油体系 | ||
---|---|---|---|---|
k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | |
新膜 | 1.14×10-5 | -6.82 | 1.11×10-8 | -17.99 |
R-140 | 1.29×10-6 | -11.47 | 8.72×10-10 | -23.28 |
R-180 | 1.45×10-6 | -11.47 | 1.65×10-9 | -22.77 |
R-220 | 2.89×10-6 | -9.98 | 4.58×10-9 | -20.16 |
1 | Bu Q, Chen K, Xie W, et al. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresource Technology, 2019, 291: 121860. |
2 | Chen X, Che Q, Li S, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180. |
3 | Shafaghat H, Kim J M, Lee I G, et al. Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts[J]. Renewable Energy, 2019, 144: 159-166. |
4 | Hassan E B, Abou-Yousef H, Steele P. Increasing the efficiency of fast pyrolysis process through sugar yield maximization and separation from aqueous fraction bio-oil[J]. Fuel Processing Technology, 2013, 110: 65-72. |
5 | Zhang L, Yu Z, Li J, et al. Steam reforming of typical small organics derived from bio-oil: correlation of their reaction behaviors with molecular structures[J]. Fuel, 2020, 259: 116214. |
6 | 熊万明, 陈金珠, 吴东平, 等. 生物油中有机化合物的分析与表征[J]. 分析测试学报, 2013, 32(8): 1024-1030. |
Xiong W M, Chen J Z, Wu D P, et al. Progresses on analysis and characterization of organic compounds in bio-oil[J]. Journal of Instrumental Analysis, 2013, 32(8): 1024-1030. | |
7 | Aysu T, Durak H, Guner S, et al. Bio-oil production via catalytic pyrolysis of anchusa azurea: effects of operating conditions on product yields and chromatographic characterization[J]. Bioresource Technology, 2016, 205: 7-14. |
8 | Han Y L, Gholizadeh M, Tran C C, et al. Hydrotreatment of pyrolysis bio-oil: a review[J]. Fuel Processing Technology, 2019, 195: 106140. |
9 | 王华, 刘荣厚, 张春梅, 等. 卡尔费休方法测定生物油含水量的试验研究[J]. 可再生能源, 2005, 3(121): 17-20. |
Wang H, Liu R H, Zhang C M, et al. An experimental study on determination of the water content in bio-oil by Karl-Fischer titration[J]. Renewable Energy, 2005, 3(121): 17-20. | |
10 | 孙玉凤, 高虹, 王通洲. 玉米秸秆生物质热裂解产物分析[J]. 沈阳理工大学学报, 2010, 29(5): 72-76. |
Sun Y F, Gao H, Wang T Z. Study on biomass pyrolysates of maize stalk [J]. Journal of Shenyang Ligong University, 2010, 29(5): 72-76. | |
11 | 徐莹, 王铁军, 马隆龙, 等. 真空热解松木粉制备生物油[J]. 农业工程学报, 2013, 29(1): 196-201. |
Xu Y, Wang T J, Ma L L, et al. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 196-201. | |
12 | Wang S, Go Y, Liu Q, et al. Separation of bio-oil by molecular distillation[J]. Fuel Processing Technology, 2009, 90(5): 738-745. |
13 | Wang Y, Wang S, Leng F, et al. Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation[J]. Separation and Purification Technology, 2015, 152: 123-132. |
14 | Capunitan J A, Capareda S C. Characterization and separation of corn stover bio-oil by fractional distillation[J]. Fuel, 2013, 112:60-73. |
15 | Teella A, Huber G W, Ford D M. Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 495-502. |
16 | Li G, Ma S, Yang H, et al. A graphene oxide membrane with self-regulated nanochannels for the exceptionally stable bio-oil dehydration[J]. AIChE Journal, 2020, 66(1): e16753. |
17 | Huang A, Lin Y S, Yang W. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding[J]. Journal of Membrane Science, 2004, 245(1/2): 41-51. |
18 | Cao Y, Li Y, Wang M, et al. High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system[J]. Journal of Membrane Science, 2019, 570: 445-454. |
19 | Cui Y, Kita H, Okamoto K. Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. Journal of Membrane Science, 2004, 236(1): 17-27. |
20 | Zhou H, Li Y, Zhu G, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties[J]. Separation and Purification Technology, 2009, 65(2): 164-172. |
21 | Zhou R, Hu L, Zhang Y, et al. Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties[J]. Microporous and Mesoporous Materials, 2013, 174: 81-89. |
22 | Wang X, Chen Y, Zhang C, et al. Preparation and characterization of high-flux T-type zeolite membranes supported on YSZ hollow fibers[J]. Journal of Membrane Science, 2014, 455: 294-304. |
23 | Lin X, Kita H, Okamoto K. Silicalite membrane preparation, characterization and separation performance[J]. Industrial & Engineering Chemistry Research, 2001, 40(19): 4069-4078. |
24 | Chen H, Li Y, Zhu G, et al. Synthesis and pervaporation performance of high-reproducibility silicalite-1 membranes[J]. Chinese Science Bulletin, 2008, 53(22): 3505-3510. |
25 | 金鸽, 周志辉, 刘红, 等. 亲水性沸石膜在异丙醇脱水中的应用及其耐酸性研究[J]. 膜科学与技术, 2014, 34(6): 77-83. |
Jin G, Zhou Z H, Liu H, et al. Application of hydrophilic zeolite membranes in isopropanol dehydration and acid resistance study[J]. Membrane Science and Technology, 2014, 34(6): 77-83. | |
26 | 李良清, 李佳佳, 张进建, 等. 渗透汽化异丙醇脱水ZSM-5沸石膜的制备与表征[J]. 现代化工, 2018, 38(9): 136-141. |
Li L Q, Li J J, Zhang J J, et al. Preparation and characterization of ZSM-5 zeolite membrane for dehydration of isopropanol via pervaporation[J]. Modern Chemical Industry, 2018, 38(9): 136-141. | |
27 | Li X, Kita H, Zhu H, et al. Synthesis of long-term acid-stable zeolite membranes and their potential application to esterification reactions[J]. Journal of Membrane Science, 2009, 339(1/2): 224-232. |
28 | Zhu M, Kumakiri I, Tanaka K, et al. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Microporous and Mesoporous Materials, 2013, 181: 47-53. |
29 | Li G, Kikuchi E, Matsukata M. A study on the pervaporation of water-acetic acid mixtures through ZSM-5 zeolite membranes[J]. Journal of Membrane Science, 2003, 218(1/2): 185-194. |
30 | Li L, Yang J, Li J, et al. High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols[J]. AIChE Journal, 2016, 62(8): 2813-2824. |
31 | Zhu M, Lu Z, Kumakiri I, et al. Preparation and characterization of high water perm-selectivity ZSM-5 membrane without organic template[J]. Journal of Membrane Science, 2012, 415: 57-65. |
32 | Hedlund J, Noack M, Kolsch P, et al. ZSM-5 membranes synthesized without organic templates using a seeding technique[J]. Journal of Membrane Science, 1999, 159(1/2): 263-273. |
33 | Bettens B, Dekeyzer S, der Bruggen B V, et al. Transport of pure components in pervaporation through a microporous silica membrane [J]. The Journal of Physical Chemistry B, 2005, 109(11): 5216-5222. |
34 | Xiao J, Wei J. Diffusion mechanism of hydrocarbons in zeolites(Ⅰ): Theory[J]. Chemical Engineering Science, 1992, 47(5): 1123-1141. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||