1 |
林史奇. 化工行业有机废水的处理工艺[J]. 化工设计通讯, 2019, 45(1): 222.
|
|
Lin S Q. Treatment technology of organic wastewater in chemical industry [J]. Chemical Engineering Design Communications, 2019, 45(1): 222.
|
2 |
郭桂悦, 梁忠越, 韩云艳, 等. 曝气生物滤池处理化工污水研究[J]. 油气田环境保护, 2008, 18(2): 22-24.
|
|
Guo G Y, Liang Z Y, Han Y Y, et al. Treatment of chemical wastewater by biological aerated filter [J]. Environmental Protection of Oil and Gas Felds, 2008, 18(2): 22-24.
|
3 |
Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J]. Electrochemical Acta, 1994, 39(11/12): 1857-1862.
|
4 |
Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP) for water purification and recovery [J]. Catalysis Today, 1999, 53(1): 51-59.
|
5 |
Aaron J J. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23): 2577-2641.
|
6 |
ComninelliS C, Kapalka A, Malato S, et al. Advanced oxidation processes for water treatment: advances and trends for R&D [J]. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 769-776.
|
7 |
Barbier J, Oliviero L, Renard B, et al. Role of ceria-supported noble metal catalysts (Ru, Pd, Pt) in wet air oxidation of nitrogen and oxygen containing compounds[J]. Topics in Catalysis, 2005, 33(1/2/3/4): 77-86.
|
8 |
Luck F. Wet air oxidation: past, present and future[J]. Catalysis Today, 1999, 53(1): 81.
|
9 |
Hamoudi S, Larachi F, Sayari A. Wet oxidation of phenolic solutions over heterogeneous catalysts: degradation profile and catalyst behavior[J]. Journal of Catalysis, 1998, 177(2): 247-258.
|
10 |
Debellefontaine H, Chakchouk M, Foussard J N, et al. Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation®[J]. Environmental Pollution, 1996, 92(2): 155-164.
|
11 |
Jin G L, Luan M M, Chen T T, et al. Progress of catalytic wet air oxidation technology[J]. Arabian Journal of Chemistry, 2016, 9(2): 1208-1213.
|
12 |
Sushma, Manjari K, Saroha A K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: a review[J]. Journal of Environmental Management, 2018, 228: 169-188.
|
13 |
Mikulová J, Baarbier J, Rossignol S, et al. Wet air oxidation of acetic acid over platinum catalysts supported on cerium-based materials: influence of metal and oxide crystallite size[J]. Journal of Catalysis, 2007, 251(1): 172-181.
|
14 |
Albin P, Michele B, Gallezo T P. Catalytic wet-air oxidation of kraft bleach plant effluents in a trickle-bed reactor [J]. Chemie Ingenieur Technik, 2001, 73(6): 657.
|
15 |
Castillejos-Lopeze, Maaroto-Valiente A, Nevskaia D M, et al. Comparative study of support effects in ruthenium catalysts applied for wet air oxidation of aromatic compounds[J]. Catalysis Today, 2009, 143(3/4): 355-363.
|
16 |
Dükkanc M, Gündüz G. Catalytic wet air oxidation of butyric acid and maleic acid solutions over noble metal catalysts prepared on TiO2[J]. Catalysis Communications, 2009, 10(6): 913-919.
|
17 |
Erjavec B, Kaplan R, Djivoni P, et al. Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts[J]. Applied Catalysis B: Environmental, 2013, 132/133: 342-352.
|
18 |
Santos A, Yustos P, Quintanilla A, et al. Influence of pH on the wet oxidation of phenol with copper catalyst [J]. Topics in Catalysis, 2005, 33(1/2/3/4): 181-192.
|
19 |
Espinosa M A, Lafaye G, Cervantes A. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides[J]. Catalysis Today, 2015, 258: 564-569.
|
20 |
Gaalova J, Barbier R, Rossignol R. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 633-639.
|
21 |
Song A, Lu G. Selective oxidation of methylamine over zirconia supported Pt-Ru, Pt and Ru catalysts[J]. Chinese Journal of Chemical Engineering, 2015, 23: 1206-1213.
|
22 |
Yang S X, Feng Y J, Cai W M, et al. Catalytic wet air oxidation of phenol over RuO2/γ-Al2O3 catalyst[J]. Rare Metals, 2004, 23(2): 131-137.
|
23 |
Yang S, Feng Y, Wan J, et al. Effect of CeO2 addition on the structure and activity of RuO2/γ-Al2O3 catalyst[J]. Applied Surface Science, 2005, 246(1/2/3): 222-228.
|
24 |
Wei H Z, Wang Y M, Yu Y, et al. Effect of TiO2 on Ru/ZrO2 catalysts in the catalytic wet air oxidation of isothiazolone[J]. Catalysis Science & Technology, 2015, 5: 1693-1703.
|
25 |
Song M, Wang Y, Guo Y, et al. Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO2[J]. Chinese Journal of Catalysis, 2017, 38(7): 1155-1165.
|
26 |
Garg A, Saha S, Rastogi V, et al. Catalytic wet air oxidation of pulp and paper mill effluent[J]. Indian Journal of Chemical Technology, 2003, 10(3): 305-310.
|
27 |
Lee D K, Kim D S, Kim T H, et al. Deactivation of Pt catalysts during wet oxidation of phenol[J]. Catalysis Today, 2010, 154(3/4): 244-249.
|
28 |
Iveete C, Guzman S, Julia L, et al. Catalytic ozonation of 4-chlorophenol and 4-phenolsulfonic acid by CeO2 films[J]. Catalysis Communications, 2019, 133: 105827.
|
29 |
Ye S, Guo J, Wang Y, et al. Effect of sodium content on the interaction between Ni and support and catalytic performance for syngas methanation over Ni/Zr-Yb-O catalysts[J]. Chinese Journal of Chemical Engineering, 2019, 27: 2705-2711.
|
30 |
Pan C J, Tsai M C, Su W N, et al. Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 154-186.
|