1 |
Munoz J D, Oosterkamp M J, Wang W, et al. Impact of long-term salinity exposure in anaerobic membrane bioreactors treating phenolic wastewater: performance robustness and endured microbial community[J]. Water Research, 2018, 141: 172-184.
|
2 |
Chris F S, Aswin K N, Thilagam R, et al. Efficacy of free and encapsulated Bacillus lichenformis strain SL10 on degradation of phenol: a comparative study of degradation kinetics [J]. Journal of Environmental Management, 2017, 197(15): 373-383.
|
3 |
Basak B, Jeon B H, Kurade M B, et al. Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor [J]. Ecotoxicol. Environ. Saf., 2019, 180: 317-325.
|
4 |
Massalha N, Brenner A, Sheindorf C, et al. Enriching composite hydrophilic polyurethane foams with PAC to enhance adsorption of phenol from aqueous solutions [J]. Chemical Engineering Journal, 2015, 280: 283-292.
|
5 |
Kamali M, Gameiro T, Costa M E, et al. Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge - a kinetic study [J]. Chemical Engineering Journal, 2019, 378: 122186.
|
6 |
Zhao G, Zhou L, Li Y, et al. Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 402-410.
|
7 |
Li Q Y, Lu H, Yin Y, et al. Synergic effect of adsorption and biodegradation enhance cyanide removal by immobilized Alcaligenes sp. strain DN25 [J]. Journal of Hazardous Materials, 2019, 364: 367-375.
|
8 |
Cai Y, Yang S, Chen D, et al. A novel strategy to immobilize bacteria on polymer particles for efficient adsorption and biodegradation of soluble organics [J]. Nanoscale, 2017, 9(32): 11530-11536.
|
9 |
Ahmad M, Liu S, Mahmood N, et al. Synergic adsorption-biodegradation by an advanced carrier for enhanced removal of high-strength nitrogen and refractory organics [J]. ACS Appl. Mater. Interfaces., 2017, 9(15): 13188-13200.
|
10 |
Partovinia A, Rasekh B. Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments [J]. Critical Reviews in Environmental Science and Technology, 2018, 48(1): 1-38.
|
11 |
Zhang W, Ren X, He J, et al. Application of natural mixed bacteria immobilized carriers to different kinds of organic wastewater treatment and microbial community comparison [J]. Journal of Hazardous Materials, 2019, 377: 113-123.
|
12 |
李青云, 周茂钟, 刘幽燕, 等.固定化铜绿假单胞菌GF31对氯氰菊酯降解的强化作用[J].化工学报, 2013, 64(6): 2219-2226.
|
|
Li Q Y, Zhou M Z, Liu Y Y, et al. Bioaugmentation strategy to enhance cypermethrin degradation by immobilized Pseudomonas aeruginosa GF31[J]. CIESC Journal, 2013, 64(6): 2219-2226.
|
13 |
Massalha N, Brenner A, Sheindorf C, et al. Application of immobilized and granular dried anaerobic biomass for stabilizing and increasing anaerobic bio-systems tolerance for high organic loads and phenol shocks [J]. Bioresour. Technol., 2015, 197: 106-112.
|
14 |
Namane A, Amrouche F, Arrar J, et al. Bacterial behaviour in the biodegradation of phenol by indigenous bacteria immobilized in Ca-alginate beads [J]. Environ. Technol., 2020, 41(14): 1829-1836.
|
15 |
周珊, 胡泽友, 喻景权.竹炭固定化假单胞菌处理含酚废水的研究[J].高校化学工程学报, 2008, 22(5): 889-894.
|
|
Zhou S, Hu Z Y, Yu J Q. Biodegradation of phenol wastewater by Pseudomonas sp. immobilized on bamboo-carbon[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(5): 889-894.
|
16 |
Zhou L C, Li Y F, Bai X, et al. Use of microorganisms immobilized on composite polyurethane foam to remove Cu(Ⅱ) from aqueous solution [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 1106-1113.
|
17 |
Ueno R, Shun W D, Urano N. Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii[J]. Fisheries Science, 2006, 72(5): 1027-1033.
|
18 |
Zhao L, Xiao D, Liu Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater [J]. Water Research, 2020, 172: 115494.
|
19 |
Xiong B, Zhang Y, Hou Y, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar [J]. Chemosphere, 2017, 182: 316-324.
|
20 |
Oh J H, Bae J H, Kim J H, et al. Effects of Kevlar pulp on the enhancement of cryogenic mechanical properties of polyurethane foam [J]. Polymer Testing, 2019, 80: 106093.
|
21 |
Tsai S C, Tsai L D, Li Y K. An isolated Candida albicans TL3 capable of degrading phenol at large concentration [J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(12): 2358-2367.
|
22 |
Arutchelvan V, Kanakasabai V, Elangovan R, et al. Kinetics of high strength phenol degradation using Bacillus brevis [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 216-222.
|
23 |
Bera S, Roy A S, Mohanty K. Biodegradation of phenol by a native mixed bacterial culture isolated from crude oil contaminated site [J]. International Biodeterioration & Biodegradation, 2017, 121: 107-113.
|
24 |
Essam T, Amin M A, Tayeb O E, et al. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1 [J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 783-788.
|
25 |
Su X, Zhou M, Hu P, et al. Whole-genome sequencing of an acidophilic Rhodotorula sp. ZM1 and its phenol-degrading capability under acidic conditions [J]. Chemosphere, 2019, 232: 76-86.
|
26 |
Jiang Y, Deng T, Shang Y, et al. Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions [J]. International Biodeterioration & Biodegradation, 2017, 123: 37-45.
|
27 |
Wang Y, Chen H, Liu Y X, et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater [J]. Bioresource Technology, 2016, 211: 711-719.
|
28 |
Stenholm Å, Hedeland M, Arvidsson T, et al. Removal of nonylphenol polyethoxylates by adsorption on polyurethane foam and biodegradation using immobilized Trametes versicolor [J]. Science of the Total Environment, 2020, 724: 138159.
|
29 |
Ma X, Li N, Jiang J, et al. Adsorption–synergic biodegradation of high-concentrated phenolic water by Pseudomonas putida immobilized on activated carbon fiber [J]. Journal of Environmental Chemical Engineering, 2013, 1(3): 466-472.
|
30 |
Gomes E, Silvan C, Macedo A C, et al. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse [J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103076.
|
31 |
Tian H, Xu X, Qu J, et al. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes [J]. Journal of Hazardous Materials, 2020, 392: 122463.
|
32 |
Li H, Meng F, Duan W, et al. Biodegradation of phenol in saline or hypersaline environments by bacteria: a review [J]. Ecotoxicol. Environ. Saf., 2019, 184: 109658.
|
33 |
司伟磊, 吕红, 周集体, 等.聚氨酯泡沫固定化蒽醌强化偶氮染料生物脱色的研究[J].高校化学工程学报, 2010, 24(3): 498-502.
|
|
Si W L, Lyu H, Zhou J T, et al. Enhanced biodecolorization of azo dyes by using anthraquinone immobilized in polyurethane foam[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3): 498-502.
|