化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4279-4291.DOI: 10.11949/0438-1157.20201639
孙雪剑1,2(),宋鹏云1(),毛文元1,邓强国2,许恒杰1,陈维1,2
收稿日期:
2020-11-12
修回日期:
2021-05-11
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
宋鹏云
作者简介:
孙雪剑(1991—),男,博士研究生,基金资助:
Xuejian SUN1,2(),Pengyun SONG1(),Wenyuan MAO1,Qiangguo DENG2,Hengjie XU1,Wei CHEN1,2
Received:
2020-11-12
Revised:
2021-05-11
Online:
2021-08-05
Published:
2021-08-05
Contact:
Pengyun SONG
摘要:
干气密封启停阶段的端面接触是不可避免的,为了揭示端面发生接触时的力学特性以保证干气密封稳定运行,运用统计学接触理论和等效阻尼思想,考虑密封环材料属性,推导出适用于分析干气密封干摩擦界面法向动态接触刚度和动态接触阻尼的解析模型,并通过实验测得密封环真实表面形貌,确定了接触模型的初始参数。探究干气密封端面发生接触时动态接触刚度和接触阻尼等参数的变化规律。结果表明,动态接触刚度随接触比压、扰动振幅的增大而增大。扰动频率对动态接触刚度的作用效果远小于接触比压或振幅对接触刚度的作用效果。动态接触阻尼随接触比压的增大而增大,随扰动频率和振幅的增大而减小。通过与多种经典接触模型对比,当前的计算结果与GW模型更为接近。针对干气密封碳化硅作为动环、石墨作为静环的配对方式,在端面未发生磨损时,结合面的微扰动态特性以动态接触刚度为主,动态接触阻尼较弱。法向接触特性的变化主要考虑50%临界脱开转速之前的接触阶段。
中图分类号:
孙雪剑, 宋鹏云, 毛文元, 邓强国, 许恒杰, 陈维. 考虑密封环材料属性和表面形貌干气密封启停阶段的动态接触特性分析[J]. 化工学报, 2021, 72(8): 4279-4291.
Xuejian SUN, Pengyun SONG, Wenyuan MAO, Qiangguo DENG, Hengjie XU, Wei CHEN. Dynamic contact analysis of dry gas seal during start-stop process considering material properties and surface topography of seal rings[J]. CIESC Journal, 2021, 72(8): 4279-4291.
实验数据 序号 | 静环 | 动环 | ||
---|---|---|---|---|
Rqs/μm | Rdqs | Rqr/μm | Rdqr | |
1 | 0.0500 | 0.0587 | 0.0700 | 0.0544 |
2 | 0.0600 | 0.0623 | 0.0600 | 0.0553 |
3 | 0.0600 | 0.0623 | 0.0700 | 0.0579 |
4 | 0.0600 | 0.0625 | 0.0700 | 0.0546 |
5 | 0.0600 | 0.0625 | 0.0700 | 0.0558 |
6 | 0.0600 | 0.0583 | 0.0700 | 0.0567 |
7 | 0.0800 | 0.0627 | 0.0600 | 0.0561 |
8 | 0.0500 | 0.0580 | 0.0700 | 0.0581 |
9 | 0.0600 | 0.0623 | 0.0600 | 0.0553 |
10 | 0.0500 | 0.0581 | 0.0700 | 0.0560 |
平均值Te | 0.0590 | 0.0608 | 0.0670 | 0.0560 |
文献结果Tr | 0.0640 | 0.0628 | 0.0700 | 0.0522 |
Tr与Te相对 误差 | 8.47% | 3.29% | 4.48% | -6.78% |
表1 均方根偏差和均方根斜率差的实验数据
Table 1 Experimental data of root mean square deviation and root mean square slope
实验数据 序号 | 静环 | 动环 | ||
---|---|---|---|---|
Rqs/μm | Rdqs | Rqr/μm | Rdqr | |
1 | 0.0500 | 0.0587 | 0.0700 | 0.0544 |
2 | 0.0600 | 0.0623 | 0.0600 | 0.0553 |
3 | 0.0600 | 0.0623 | 0.0700 | 0.0579 |
4 | 0.0600 | 0.0625 | 0.0700 | 0.0546 |
5 | 0.0600 | 0.0625 | 0.0700 | 0.0558 |
6 | 0.0600 | 0.0583 | 0.0700 | 0.0567 |
7 | 0.0800 | 0.0627 | 0.0600 | 0.0561 |
8 | 0.0500 | 0.0580 | 0.0700 | 0.0581 |
9 | 0.0600 | 0.0623 | 0.0600 | 0.0553 |
10 | 0.0500 | 0.0581 | 0.0700 | 0.0560 |
平均值Te | 0.0590 | 0.0608 | 0.0670 | 0.0560 |
文献结果Tr | 0.0640 | 0.0628 | 0.0700 | 0.0522 |
Tr与Te相对 误差 | 8.47% | 3.29% | 4.48% | -6.78% |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
软材料的硬度 H/GPa | 0.7 | 密封环外径 ro/mm | 77.78 |
等效弹性模量 E①/GPa | 23.65 | 密封环槽根半径 rg/mm | 69 |
最大接触压力因子 K② | 0.577 | 螺旋角 α/(°) | 15 |
塑性指数ψ | 18.6 | 槽坝比 γ | 1 |
微扰频率 ω/Hz | 40 | 槽数 Ng | 12 |
微扰振幅 X0/μm | 0.002~0.02 | 动环 | 碳化硅 |
密封环内径 ri/mm | 58.42 | 静环 | 石墨 |
表2 计算模型结构参数和材料参数
Table 2 Structure parameters and material parameters of the model
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
软材料的硬度 H/GPa | 0.7 | 密封环外径 ro/mm | 77.78 |
等效弹性模量 E①/GPa | 23.65 | 密封环槽根半径 rg/mm | 69 |
最大接触压力因子 K② | 0.577 | 螺旋角 α/(°) | 15 |
塑性指数ψ | 18.6 | 槽坝比 γ | 1 |
微扰频率 ω/Hz | 40 | 槽数 Ng | 12 |
微扰振幅 X0/μm | 0.002~0.02 | 动环 | 碳化硅 |
密封环内径 ri/mm | 58.42 | 静环 | 石墨 |
12 | Hu S T, Huang W F, Liu X F, et al. Stability and tracking analysis of gas face seals under low-parameter conditions considering slip flow[J]. Journal of Vibroengineering, 2017, 19(3): 2126-2141. |
13 | 江锦波, 滕黎明, 孟祥铠, 等. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202. |
Jiang J B, Teng L M, Meng X K, et al. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation[J]. CIESC Journal, 2021, 72(4): 2190-2202. | |
14 | 孙宝财, 丁雪兴, 陈金林, 等. 干气密封摩擦界面法向接触刚度分形模型[J]. 振动与冲击, 2019, 38(18): 248-255. |
Sun B C, Ding X X, Chen J L, et al. Fractal model for the normal contact stiffness of frictional interface in dry gas seals[J]. Journal of Vibration and Shock, 2019, 38(18): 248-255. | |
15 | 孙见君, 陈国旗, 嵇正波, 等. 接触式机械密封界面泄漏机理分析[J]. 化工学报, 2018, 69(4): 1528-1536. |
Sun J J, Chen G Q, Ji Z B, et al. Analysis on leakage mechanism for contacting mechanical seal interface[J]. CIESC Journal, 2018, 69(4): 1528-1536. | |
16 | 魏龙, 顾伯勤, 刘其和, 等. 机械密封摩擦副端面接触分形模型的修正[J]. 化工学报, 2013, 64(5): 1723-1729. |
Wei L, Gu B Q, Liu Q H, et al. Correction of contact fractal model for friction faces of mechanical seals[J]. CIESC Journal, 2013, 64(5): 1723-1729. | |
17 | 李辉光, 刘恒, 虞烈. 粗糙机械结合面的接触刚度研究[J]. 西安交通大学学报, 2011, 45(6): 69-74. |
Li H G, Liu H, Yu L. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi'an Jiaotong University, 2011, 45(6): 69-74. | |
18 | Greenwood J A, Williamson J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1966, 295(1442): 300-319. |
1 | Huang W F, Lin Y B, Gao Z, et al. An acoustic emission study on the starting and stopping processes of a dry gas seal for pumps[J]. Tribology Letters, 2013, 49(2): 379-384. |
2 | Fan W J, Huang W F, Liu Y, et al. State evolution of dry gas seal during repeated start-stop operation using acoustic emission method[J]. Tribology Transactions, 2020, 63(1): 173-181. |
19 | 彭旭东, 刘坤, 白少先, 等. 典型螺旋槽端面干式气体密封动压开启性能[J]. 化工学报, 2013, 64(1): 326-333. |
Peng X D, Liu K, Bai S X, et al. Dynamic opening characteristics of dry gas seals with typical types of spiral grooves[J]. CIESC Journal, 2013, 64(1): 326-333. | |
20 | Ruan B. Numerical modeling of dynamic sealing behaviors of spiral groove gas face seals[J]. Journal of Tribology, 2002, 124(1): 186-195. |
21 | 范瑜, 宋鹏云, 许恒杰. 水蒸气润滑干气密封启动过程研究[J]. 化工学报, 2020, 71(8): 3671-3680. |
Fan Y, Song P Y, Xu H J. Study on startup operation of dry gas seal with steam lubrication[J]. CIESC Journal, 2020, 71(8): 3671-3680. | |
22 | Chang W R, Etsion I, Bogy D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 257-263. |
23 | Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662. |
24 | Ruan B, Salant R F, Green I. A mixed lubrication model of liquid/gas mechanical face seals[J]. Tribology Transactions, 1997, 40(4): 647-657. |
3 | Ono K, Nomoto Y, Onigata J. Analysis of squeak in mechanical seal used in water pumps[R]. SAETechnical Paper Series. Warrendale, PA, United States: SAE International, 2000. |
4 | Kröger M, Neubauer M, Popp K. Experimental investigation on the avoidance of self-excited vibrations[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366(1866): 785-810. |
25 | Etsion I, Front I. A model for static sealing performance of end face seals[J]. Tribology Transactions, 1994, 37(1): 111-119. |
26 | Yuan Y, Gan L, Liu K, et al. Elastoplastic contact mechanics model of rough surface based on fractal theory[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1): 207-215. |
5 | Kou G Y, Li X H, Wang Y, et al. Steady performance and dynamic characteristics of a superellipse groove dry gas seal at a high-speed condition[J]. Industrial Lubrication and Tribology, 2020, 72(6): 789-796. |
6 | Zirkelback N. Parametric study of spiral groove gas face seals[J]. Tribology Transactions, 2000, 43(2): 337-343. |
7 | 徐奇超, 江锦波, 陈源, 等. 经典曲线型槽干气密封稳动态密封特性数值分析[J]. 摩擦学学报, 2018, 38(5): 584-594. |
27 | Tabor D. The Hardness of Metals[M]. Oxford: Oxford University Press, 2000. |
28 | Hutchings I M. The contributions of David Tabor to the science of indentation hardness[J]. Journal of Materials Research, 2009, 24(3): 581-589. |
7 | Xu Q C, Jiang J B, Chen Y, et al. Numerical analysis of steady-state and dynamic characteristics of typical molded line groove dry gas seals[J]. Tribology, 2018, 38(5): 584-594. |
8 | Chen Y, Peng X D, Jiang J B, et al. Experimental and theoretical studies of the dynamic behavior of a spiral-groove dry gas seal at high-speeds[J]. Tribology International, 2018, 125: 17-26. |
29 | Ioka I, Yoda S. Acoustic emission caused by reversed plastic deformation in polycrystalline graphite[J]. Journal of Nuclear Materials, 1987, 148(3): 344-350. |
30 | Antisari M V, Montone A, Jovic N, et al. Low energy pure shear milling: a method for the preparation of graphite nano-sheets[J]. Scripta Materialia, 2006, 55(11): 1047-1050. |
31 | Lundberg M, Calmunger M, Peng R L. In-situ SEM/EBSD study of deformation and fracture behaviour of flake cast iron[C]//13th Int. Conf. Fract, 2013: 1-9. |
32 | 董沫辰, 宫经珠, 吕晋军, 等. 运用塑性指数进行密封材料的摩擦学设计[J]. 表面技术, 2017, 46(4): 180-185. |
Dong M C, Gong J Z, Lyu J J, et al. Tribology design of sealing materials using plastic index[J]. Surface Technology, 2017, 46(4): 180-185. | |
33 | Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633. |
34 | Johnson K. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1985. |
9 | 许恒杰, 宋鹏云, 毛文元, 等. 考虑氢气实际气体效应和阻塞流效应的螺旋槽干气密封动态特性分析[J]. 化工学报, 2017, 68(12): 4675-4684. |
Xu H J, Song P Y, Mao W Y, et al. Dynamic characteristics of spiral groove dry gas seals with consideration of hydrogen real gas and choked flow effects[J]. CIESC Journal, 2017, 68(12): 4675-4684. | |
35 | Abbott E, Firestone F. Specifying surface quality: a method based on accurate measurement and comparison[J]. Mechanical Engineering, 1933, 107: 569-572. |
36 | 丁雪兴, 王平西, 张伟政, 等. 螺旋槽干气密封环端面摩擦试验及其性能分析[J]. 化工学报, 2017, 68(1): 208-214. |
10 | 许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323. |
Xu H J, Song P Y, Mao W Y, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323. | |
11 | 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659. |
36 | Ding X X, Wang P X, Zhang W Z, et al. Analysis of tribological test and performance under rings end faces of spiral groove dry gas seal[J]. CIESC Journal, 2017, 68(1): 208-214. |
37 | 傅卫平, 娄雷亭, 高志强, 等. 机械结合面法向接触刚度和阻尼的理论模型[J]. 机械工程学报, 2017, 53(9): 73-82. |
Fu W P, Lou L T, Gao Z Q, et al. Theoretical model for the contact stiffness and damping of mechanical joint surface[J]. Journal of Mechanical Engineering, 2017, 53(9): 73-82. | |
38 | 刘延柱, 陈立群, 陈文良. 振动力学 [M]. 2版. 北京: 高等教育出版社, 2011. |
Liu Y Z, Chen L Q, Chen W L. Vibration Mechanics[M]. 2nd ed. Beijing: Higher Education Press, 2011. | |
39 | 路泽鑫. 固-液结合面法向接触刚度、阻尼模型研究[D]. 西安: 西安理工大学, 2019. |
Lu Z X. Study on normal contact stiffness and damping model of solid-liquid bonding surface[D]. Xi'an: Xi'anUniversity of Technology, 2019. | |
40 | McCool J I. Relating profile instrument measurements to the functional performance of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 264-270. |
11 | Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659. |
41 | Sayles R S, Thomas T R. Surface topography as a nonstationary random process[J]. Nature, 1978, 271(5644): 431-434. |
42 | McCool J I. Comparison of models for the contact of rough surfaces[J]. Wear, 1986, 107(1): 37-60. |
43 | Bush A W, Gibson R D, Keogh G P. The limit of elastic deformation in the contact of rough surfaces[J]. Mechanics Research Communications, 1976, 3(3): 169-174. |
44 | Gabriel R P. Fundamentals of spiral groove noncontacting face seals[J]. Lubrication Engineering, 1994, 50 (3): 215-224. |
45 | 胡琼, 孙见君, 马晨波, 等. 基于微凸体侧接触模型的机械密封端面混合摩擦热理论预测[J]. 机械工程学报, 2017, 53(21): 102-108. |
Hu Q, Sun J J, Ma C B, et al. Theoretical prediction of mixed frictional heat of mechanical seals based on shoulder-shoulder contact model of asperities[J]. Journal of Mechanical Engineering, 2017, 53(21): 102-108. | |
46 | Green I. A transient dynamic analysis of mechanical seals including asperity contact and face deformation[J]. Tribology Transactions, 2002, 45(3): 284-293. |
47 | Zhao Y W, Maietta D M, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1): 86-93. |
48 | 彭旭东, 李纪云, 盛颂恩, 等. 表面粗糙度对螺旋槽干式气体端面密封性能预测与结构优化的影响[J]. 摩擦学学报, 2007, 27(6): 567-572. |
Peng X D, Li J Y, Sheng S E, et al. Effect of surface roughness on performance prediction and geometric optimization of a spiral-groove face seal[J]. Tribology, 2007, 27(6): 567-572. | |
49 | Khonsari M, Booser E R. Applied Tribology [M]. New York: John Wiley & Sons Ltd., 2008. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[8] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[11] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[12] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[13] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[14] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[15] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 562
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 353
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||