1 |
Rosen M A, Koohi-Fayegh S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems[J]. Energy, Ecology and Environment, 2016, 1(1): 10-29.
|
2 |
Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
|
3 |
Guo Y J, Li G D, Zhou J B, et al. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis[J]. IOP Conference Series: Earth and Environmental Science, 2019, 371: 042022.
|
4 |
Kim J S, Kim B, Kim H, et al. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(11): 1702774.
|
5 |
Millet P, Mbemba N, Grigoriev S A, et al. Electrochemical performances of PEM water electrolysis cells and perspectives[J]. International Journal of Hydrogen Energy, 2011, 36(6): 4134-4142.
|
6 |
Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
|
7 |
Shi Z P, Wang X, Ge J J, et al. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts[J]. Nanoscale, 2020, 12(25): 13249-13275.
|
8 |
Sun W, Zhou Z H, Zaman W Q, et al. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 41855-41862.
|
9 |
Browne M P, Nolan H, Duesberg G S, et al. Low-overpotential high-activity mixed manganese and ruthenium oxide electrocatalysts for oxygen evolution reaction in alkaline media[J]. ACS Catalysis, 2016, 6(4): 2408-2415.
|
10 |
Browne M P, Nolan H, Twamley B, et al. Thermally prepared Mn2O3/RuO2/Ru thin films as highly active catalysts for the oxygen evolution reaction in alkaline media[J]. ChemElectroChem, 2016, 3(11): 1847-1855.
|
11 |
Oakton E, Lebedev D, Povia M, et al. IrO2-TiO2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2017, 7(4): 2346-2352.
|
12 |
Hu W, Chen S L, Xia Q H. IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6967-6976.
|
13 |
Mazúr P, Polonský J, Paidar M, et al. Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12081-12088.
|
14 |
Etzi Coller Pascuzzi M, Goryachev A, Hofmann J P, et al. Mn promotion of rutile TiO2-RuO2 anodes for water oxidation in acidic media[J]. Applied Catalysis B: Environmental, 2020, 261: 118225.
|
15 |
Tolstoy V P, Vladimirova N I, Gulina L B. Formation of ordered honeycomb-like structures of manganese oxide 2D nanocrystals with the birnessite-like structure and their electrocatalytic properties during oxygen evolution reaction upon water splitting in an alkaline medium[J]. ACS Omega, 2019, 4(26): 22203-22208.
|
16 |
Chen S, Huang H, Jiang P, et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media[J]. ACS Catalysis, 2020, 10(2): 1152-1160.
|
17 |
Ma Z, Zhang Y, Liu S Z, et al. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts[J]. Journal of Electroanalytical Chemistry, 2018, 819: 296-305.
|
18 |
Ferreira K N, Iverson T M, Maghlaoui K, et al. Architecture of the photosynthetic oxygen-evolving center[J]. Science, 2004, 303(5665): 1831-1838.
|
19 |
Zhang S Y, Li X S, Liu J L, et al. Plasmochemical approach to template-free synthesis of highly crystalline mesoporous TiO2 within milliseconds[J]. ChemNanoMat, 2019, 5(4): 403-406.
|
20 |
Lian H Y, Liu J L, Li X S, et al. Plasma chain catalytic reforming of methanol for on-board hydrogen production[J]. Chemical Engineering Journal, 2019, 369: 245-252.
|
21 |
Li K, Liu J L, Li X S, et al. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: dramatic energy efficiency and catalyst auto-reduction[J]. Chemical Engineering Journal, 2016, 288: 671-679.
|
22 |
Zhu B, Li X S, Liu J L, et al. In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: significant contribution of water vapor[J]. Applied Catalysis B: Environmental, 2015, 179: 69-77.
|
23 |
Lee S J, Pyun S I, Lee S K, et al. Fundamentals of rotating disc and ring-disc electrode techniques and their applications to study of the oxygen reduction mechanism at Pt/C electrode for fuel cells[J]. Israel Journal of Chemistry, 2008, 48(3/4): 215-228.
|
24 |
Lopez-Haro M, Guétaz L, Printemps T, et al. Three-dimensional analysis of Nafion layers in fuel cell electrodes[J]. Nature Communications, 2014, 5: 5229.
|
25 |
Li G F, Yang D L, Abel Chuang P Y. Defining nafion ionomer roles for enhancing alkaline oxygen evolution electrocatalysis[J]. ACS Catalysis, 2018, 8(12): 11688-11698.
|
26 |
Zhang X Y, Ding Y H. Thickness-dependent structural and transport behaviors in the platinum-Nafion interface: a molecular dynamics investigation[J]. RSC Adv., 2014, 4(83): 44214-44222.
|
27 |
Weber A Z, Newman J. Modeling transport in polymer-electrolyte fuel cells[J]. Chemical Reviews, 2004, 104(10): 4679-4726.
|
28 |
Bard A J, Faulkner L R. Electrochemical Methods : Fundamentals And Applications [M]. 2nd ed. New York: Wiley, 2001.
|
29 |
Zhu X, Li J, Liu M, et al. Mesoporous TiO2 electrocatalysts synthesized by gliding arc plasma for oxygen evolution reaction [J]. Journal of Physics D: Applied Physics, 2021(submitted).
|
30 |
Boddy P J. Oxygen evolution on semiconducting TiO2[J]. Journal of the Electrochemical Society, 1968, 115(2): 199.
|
31 |
Li A L, Ooka H, Bonnet N, et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angewandte Chemie International Edition, 2019, 58(15): 5054-5058.
|