化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 398-405.doi: 10.11949/0438-1157.20210441

• 催化、动力学与反应器 • 上一篇    下一篇

氧化锰电催化析氧反应及其电极界面特性

朱晓兵1,2(),李佳佳1,2,李怡宁1,杨洪月1,2,李小松2,刘景林2   

  1. 1.大连理工大学氢能与环境催化中心,辽宁 大连 116024
    2.大连理工大学等离子体物理化学实验室,辽宁 大连 116024
  • 收稿日期:2021-04-06 修回日期:2021-04-20 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 朱晓兵 E-mail:xzhu@dlut.edu.cn
  • 作者简介:朱晓兵(1977—),男,博士,副教授,xzhu@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(11475041)

Oxygen evolution reaction over manganese oxides and the electrode-solution interface

ZHU Xiaobing1,2(),LI Jiajia1,2,LI Yining1,YANG Hongyue1,2,LI Xiaosong2,LIU Jinglin2   

  1. 1.Center for Hydrogen Energy and Environmental Catalysis, Dalian University of Pechnology, Dalian 116024, Liaoning, China
    2.Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2021-04-06 Revised:2021-04-20 Published:2021-06-20 Online:2021-06-20
  • Contact: ZHU Xiaobing E-mail:xzhu@dlut.edu.cn

摘要:

析氧半反应是速控步骤。氧化锰(MnOx)具有多价态,可形成多个子步骤降低活化能。二氧化钛(TiO2)是抗氧化性半导体。考察两种氧化锰催化剂析氧性能,即滑动弧等离子体合成MnOx(pM)和商业化(cM),与商业化TiO2 (cT)比较。通过理想极化电极系统(IPE)解析,表达电极界面特性,揭示三相界面与活性的关联。结果表明:对两种MnOx 催化剂,pM比cM性能更优。碱性环境中,前者起始电位低180 mV,Tafel斜率近半。酸性中,均表现阶跃式极化,析氧性能相近。cM比cT催化剂析氧性能更优,起始电位低420 mV。溶液电阻Rs与活性变化趋势一致。对相同催化剂,考察I/C、担量、单双层结构,电容压降占比fCd与活性一致。对不同催化剂,考察cM, cT或pM, cM,fCd与活性不一致,这与多价态锰参与非法拉第过程有关。

关键词: 氧化锰, 二氧化钛, 滑动弧等离子体, 析氧反应, 电极-溶液界面

Abstract:

Oxygen evolution reaction (OER) is the rate-determining step for water electrolysis. Manganese oxides (MnOx) possess five valence states, hence with multiple steps to reduce the activation energy, and semiconductor titanium dioxide (TiO2) exhibits corrosion resistance. Here we demonstrate OER performance over three catalysts, of MnOx synthesized by gliding arc plasma (pM) and commercial MnOx (cM), and commercial TiO2 (cT). Of non- Faradiac process, using ideal polarized electrode (IPE), it expresses the electrode-solution interface, hence reveals the association between triple phase boundary (TPB) and activity. It suggests that, the MnOxof pM shows better activity than cM. In alkali, the former has 180 mV lower potential vs RHE, and nearly half Tafel slope. In acid, both the MnOx catalysts show step-current polarization with similar activity. Moreover, cM shows higher activity than cT, e.g., 420 mV lower potential. The revealed solution resistance, Rs is consistent with activity. For the same catalyst, the fraction in voltage drop of capacitance fCd, is also in accordance with the activity in terms of ionomer to catalyst ratio (I/C), loading and single/double layer(s). However, for the varied catalysts, e.g., cM versus cT, or pM versus cM, the fCd is inconsistent with the activity, which might result from involving the non-Faradiac process of MnOx.

Key words: MnOx, TiO2, gliding arc plasma, oxygen evolution reaction, electrode-solution interface

中图分类号: 

  • O 646

图1

氧化锰MnOx (pM, cM)电极[I/C=1, 231 μg/cm2, 双层,pM催化剂t0,x,is=(0.659 s, 63.8 μA),cM催化剂(2.749 s, 65.6 μA),电解液为1 mol/L KOH]"

图2

氧化锰MnOx (pM, cM)电极[I/C=4, 693 μg/cm2, 双层,pM催化剂t0,x,is=(7.97 s, 4.86 μA), cM催化剂(6.72 s, 32.7 μA)]"

图3

氧化锰和氧化钛(cM, cT)电极[单层,I/C=0.2,231 μg/cm2, t0,x,is=(8.84 s, 13.5 μA), cM催化剂;I/C=0.3,693 μgcat/cm2, (2.02 s, 1.5 μA), cT催化剂, cT扫速50 mV/s]"

图4

不同I/C的氧化锰(pM)电极[I/C=1, 2, 4, 231 μg/cm2, 双层,t0,x,is=(8.4 s, 1.86 μA), I/C=1;(9.8 s, 1.26 μA), I/C=2;(7.37 s,3.29 μA), I/C=4]"

图5

不同担量的氧化锰(pM)电极[231, 693 μg/cm2, I/C=4, 双层: t0,x,is=(7.37 s, 3.29 μA), 231 μg/cm2; t0,x,is=(7.97 s, 4.86 μA), 693 μg/cm2。 曲线2数据同图2曲线1]"

图6

不同层结构的氧化锰(cM)电极[单层、双层,I/C=0.2, 231 μg/cm2: t0,x,is=(8.84 s, 13.5 μA),单层;t0,x,is=(7.43 s, 58.2 μA), 双层;曲线1同图3曲线2]"

表1

氧化锰MnOx(pM, cM)电极参数[图1(a)]"

CatalystOnset potential /V

b/

(mV/dec)

Starting Tafel (E, i)/(V, mA)i/ mA
pM0.851400.900.174.97
cM1.033021.080.150.37
1 Rosen M A, Koohi-Fayegh S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems[J]. Energy, Ecology and Environment, 2016, 1(1): 10-29.
2 Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
3 Guo Y J, Li G D, Zhou J B, et al. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis[J]. IOP Conference Series: Earth and Environmental Science, 2019, 371: 042022.
4 Kim J S, Kim B, Kim H, et al. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(11): 1702774.
5 Millet P, Mbemba N, Grigoriev S A, et al. Electrochemical performances of PEM water electrolysis cells and perspectives[J]. International Journal of Hydrogen Energy, 2011, 36(6): 4134-4142.
6 Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
7 Shi Z P, Wang X, Ge J J, et al. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts[J]. Nanoscale, 2020, 12(25): 13249-13275.
8 Sun W, Zhou Z H, Zaman W Q, et al. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 41855-41862.
9 Browne M P, Nolan H, Duesberg G S, et al. Low-overpotential high-activity mixed manganese and ruthenium oxide electrocatalysts for oxygen evolution reaction in alkaline media[J]. ACS Catalysis, 2016, 6(4): 2408-2415.
10 Browne M P, Nolan H, Twamley B, et al. Thermally prepared Mn2O3/RuO2/Ru thin films as highly active catalysts for the oxygen evolution reaction in alkaline media[J]. ChemElectroChem, 2016, 3(11): 1847-1855.
11 Oakton E, Lebedev D, Povia M, et al. IrO2-TiO2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2017, 7(4): 2346-2352.
12 Hu W, Chen S L, Xia Q H. IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6967-6976.
13 Mazúr P, Polonský J, Paidar M, et al. Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12081-12088.
14 Etzi Coller Pascuzzi M, Goryachev A, Hofmann J P, et al. Mn promotion of rutile TiO2-RuO2 anodes for water oxidation in acidic media[J]. Applied Catalysis B: Environmental, 2020, 261: 118225.
15 Tolstoy V P, Vladimirova N I, Gulina L B. Formation of ordered honeycomb-like structures of manganese oxide 2D nanocrystals with the birnessite-like structure and their electrocatalytic properties during oxygen evolution reaction upon water splitting in an alkaline medium[J]. ACS Omega, 2019, 4(26): 22203-22208.
16 Chen S, Huang H, Jiang P, et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media[J]. ACS Catalysis, 2020, 10(2): 1152-1160.
17 Ma Z, Zhang Y, Liu S Z, et al. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts[J]. Journal of Electroanalytical Chemistry, 2018, 819: 296-305.
18 Ferreira K N, Iverson T M, Maghlaoui K, et al. Architecture of the photosynthetic oxygen-evolving center[J]. Science, 2004, 303(5665): 1831-1838.
19 Zhang S Y, Li X S, Liu J L, et al. Plasmochemical approach to template-free synthesis of highly crystalline mesoporous TiO2 within milliseconds[J]. ChemNanoMat, 2019, 5(4): 403-406.
20 Lian H Y, Liu J L, Li X S, et al. Plasma chain catalytic reforming of methanol for on-board hydrogen production[J]. Chemical Engineering Journal, 2019, 369: 245-252.
21 Li K, Liu J L, Li X S, et al. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: dramatic energy efficiency and catalyst auto-reduction[J]. Chemical Engineering Journal, 2016, 288: 671-679.
22 Zhu B, Li X S, Liu J L, et al. In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: significant contribution of water vapor[J]. Applied Catalysis B: Environmental, 2015, 179: 69-77.
23 Lee S J, Pyun S I, Lee S K, et al. Fundamentals of rotating disc and ring-disc electrode techniques and their applications to study of the oxygen reduction mechanism at Pt/C electrode for fuel cells[J]. Israel Journal of Chemistry, 2008, 48(3/4): 215-228.
24 Lopez-Haro M, Guétaz L, Printemps T, et al. Three-dimensional analysis of Nafion layers in fuel cell electrodes[J]. Nature Communications, 2014, 5: 5229.
25 Li G F, Yang D L, Abel Chuang P Y. Defining nafion ionomer roles for enhancing alkaline oxygen evolution electrocatalysis[J]. ACS Catalysis, 2018, 8(12): 11688-11698.
26 Zhang X Y, Ding Y H. Thickness-dependent structural and transport behaviors in the platinum-Nafion interface: a molecular dynamics investigation[J]. RSC Adv., 2014, 4(83): 44214-44222.
27 Weber A Z, Newman J. Modeling transport in polymer-electrolyte fuel cells[J]. Chemical Reviews, 2004, 104(10): 4679-4726.
28 Bard A J, Faulkner L R. Electrochemical Methods : Fundamentals And Applications [M]. 2nd ed. New York: Wiley, 2001.
29 Zhu X, Li J, Liu M, et al. Mesoporous TiO2 electrocatalysts synthesized by gliding arc plasma for oxygen evolution reaction [J]. Journal of Physics D: Applied Physics, 2021(submitted).
30 Boddy P J. Oxygen evolution on semiconducting TiO2[J]. Journal of the Electrochemical Society, 1968, 115(2): 199.
31 Li A L, Ooka H, Bonnet N, et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angewandte Chemie International Edition, 2019, 58(15): 5054-5058.
[1] 刘庆祎, 肖桐, 孙文杰, 张家豪, 刘昌会. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882.
[2] 赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
[3] 姚彦虎, 杨晨, 张兵, 吴永红, 王同华. 基于TiO2溶胶杂化的分子筛炭膜制备及其结构与性能[J]. 化工学报, 2021, 72(8): 4418-4424.
[4] 赵婉娜, 周春梅, 靳玉广, 杨艳辉. 表面氧化态可调的α-MnO2纳米线选择性催化氧化5-羟甲基糠醛[J]. 化工学报, 2021, 72(12): 6274-6281.
[5] 张伶, 陈红梅, 魏子栋. 过渡金属氧化物催化析氧反应研究进展[J]. 化工学报, 2020, 71(9): 3876-3904.
[6] 马佳欢, 杨微微, 白羽, 孙克宁. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030.
[7] 李倩倩, 唐思扬, 岳海荣, 刘长军, 马奎, 钟山, 梁斌. Pd-Rh/TiO2光催化CO2氧化乙烷脱氢研究[J]. 化工学报, 2020, 71(8): 3556-3564.
[8] 胡京宇, 姚戎, 潘玉航, 朱超, 宋爽, 沈意. 可光助再生二氧化钛/层状双氢氧化物去除水体中有机染料[J]. 化工学报, 2020, 71(7): 3296-3303.
[9] 牛敬苒, 邓会宁, 张伟, 胡柏松, 张少峰. 二氧化钛调控基膜结构对氧化石墨烯复合膜性能的影响[J]. 化工学报, 2020, 71(6): 2850-2856.
[10] 彭娜, 翟鹏飞, 王景涛, 王俊晓, 刘咏. 二氧化锰纳米片改性隔膜在锂硫电池中的应用[J]. 化工学报, 2020, 71(5): 2389-2400.
[11] 原荷峰,马自在,王淑敏,李晋平,王孝广. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831-5841.
[12] 王尧,唐艺芸. 氧电极金属单原子催化剂的研究进展[J]. 化工学报, 2020, 71(10): 4409-4428.
[13] 陈志远, 颜冬, 钱凡, 李文翠. 高导电三明治状MnO2/CNTs/MnO2介孔材料的制备及其赝电容性能[J]. 化工学报, 2019, 70(12): 4864-4871.
[14] 高佳明, 王明, 马晓华, 许振良. 烧结温度对TiO2/不锈钢中空纤维复合膜结构和性能的影响[J]. 化工学报, 2018, 69(11): 4879-4886.
[15] 覃方丽, 袁耀, 艾冠亚, 王爱军, 张鸿羽. 三维有序大/介孔TiO2反opal光阳极制备及光电性能[J]. 化工学报, 2017, 68(7): 2925-2930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!