化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5831-5841.DOI: 10.11949/0438-1157.20200597
原荷峰1(),马自在2,王淑敏1,李晋平2,王孝广1,2()
收稿日期:
2020-05-18
修回日期:
2020-07-20
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
王孝广
作者简介:
原荷峰(1989—),女,博士研究生,基金资助:
YUAN Hefeng1(),MA Zizai2,WANG Shumin1,LI Jinping2,WANG Xiaoguang1,2()
Received:
2020-05-18
Revised:
2020-07-20
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Xiaoguang
摘要:
在室温下利用NaBH4溶液还原Co3O4纳米线获得富含氧空位(VO)的三维自支撑纳米线阵列用作全水解电催化剂,其中NaBH4处理10 min的Co3O4/NF在碱性介质中对析氧反应(OER)和析氢反应(HER)表现出很高的活性,在10 mA·cm-2电流密度下分别仅需240和132 mV的过电位。VO-Co3O4/NF同时作为阴极和阳极电催化剂时,在10 mA·cm-2下电解水槽电压仅为1.63 V,其耐久性可达60 h以上。该工作为富含氧空位结构的过渡金属氧化物双功能电催化剂的制备提供了新的方法和思路。
中图分类号:
原荷峰,马自在,王淑敏,李晋平,王孝广. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831-5841.
YUAN Hefeng,MA Zizai,WANG Shumin,LI Jinping,WANG Xiaoguang. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020, 71(12): 5831-5841.
图3 Co3O4/NF和VO-Co3O4/NF的微结构表征((e) 中用实线表示VO-Co3O4的晶格区域,虚线表示非晶区域)
Fig.3 Microstructure characterization of Co3O4/NF and VO-Co3O4/NF(The lattice fringes and amorphous domain of VO-Co3O4/NF are labeled in solid and doted ellipse respectively in (e))
图6 VO-Co3O4/NF的析氧性能测试((a)~(d))和双功能VO-Co3O4/NF催化剂的全水解性能测试((e),(f))
Fig.6 OER performance of VO-Co3O4/NF ((a)—(d)) andoverall water splitting performance of bifunctional VO-Co3O4/NF((e),(f))
图7 VO-Co3O4/NF在OER耐久性((a),(b))和HER耐久性((c),(d))实验后的XRD谱图和SEM照片
Fig.7 XRD patterns and SEM images of VO-Co3O4/NF after OER ((a),(b)) and HER ((c),(d)) durability test, respectively
图A2 VO-Co3O4/NF在OER((a),(b))和HER((c),(d))计时电位测试后的高分辨XPS光谱图chronopotentiometric test respectively
Fig.A2 High resolution XPS spectra of Co 2p and O 1s for VO-Co3O4/NF after OER((a),(b)) and HER((c),(d))
1 | Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation [J]. Int. J. Hydrogen Energy, 2019, 44(29): 15072-15086. |
2 | Jamesh M I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media [J]. J. Power Sources, 2016, 333: 213-236. |
3 | Yang M Q, Wang J, Wu H, et al. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting [J]. Small, 2018, 14(15): 1703323. |
4 | Tang C, Zhang R, Lu W B, et al. Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation [J]. Adv. Mater., 2017, 29(2): 1602441. |
5 | 黄颖彬, 张敏, 柳鹏,等. 氧还原和析氧反应的双功能电催化剂―氮磷共掺碳负载四氧化三钴 [J]. 催化学报, 2016, 37(8): 1249-1256. |
Huang Y B, Zhang M, Liu P, et al. Co3O4 supported on N, P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions [J]. Chinese J. Catal., 2016, 37(8): 1249-1256. | |
6 | Yan D F, Chen R, Xiao Z H, et al. Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting [J]. Electrochim. Acta, 2019, 303: 316-322. |
7 | Cai Z, Bi Y M, Hu E Y, et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis [J]. Adv. Energy Mater., 2018, 8(3): 1701694. |
8 | Tong Y, Mao H N, Xu Y L, et al. Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis [J]. Inorg. Chem. Front., 2019, 6(8): 2055-2060. |
9 | Cheng G H, Kou T Y, Zhang J, et al. O22-/O-functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting [J]. Nano Energy, 2017, 38: 155-166. |
10 | Zhang L J, Li H J, Li K Z, et al. Morphology-controlled fabrication of Co3O4 nanostructures and their comparative catalytic activity for oxygen evolution reaction [J]. J. Alloys Comp., 2016, 680: 146-154. |
11 | Yang L, Zhou H, Qin X, et al. Cathodic electrochemical activation of Co3O4 nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity [J]. Chem. Commun., 2018, 54(17): 2150-2153. |
12 | Liu Y W, Xiao C, Li Z, et al. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials [J]. Adv. Energy Mater., 2016, 6(23): 1600436. |
13 | Zhang Z, Zhang T R, Lee J Y. Enhancement effect of borate doping on the oxygen evolution activity of α-nickel hydroxide [J]. ACS Appl. Nano. Mater., 2018, 1(2): 751-758. |
14 | Zhuang L Z, Jia Y, He T W, et al. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity [J]. Nano Res., 2018, 11(6): 3509-3518. |
15 | Liu P F, Yang S, Zhang B, et al. Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting [J]. ACS Appl. Mater. Interfaces., 2016, 8(50): 34474-34481. |
16 | Song F, Schenk K, Hu X L. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes [J]. Energ. Environ. Sci., 2016, 9(2): 473-477. |
17 | Yang H Y, Chen Z L, Guo P F, et al. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction [J]. Appl. Catal. B-Environ., 2020, 261: 118240. |
18 | Peng S J, Gong F, Li L L, et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis [J]. J. Am. Chem. Soc., 2018, 140(42): 13644-13653. |
19 | Wei R J, Fang M, Dong G F, et al. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation [J]. ACS Appl. Mater. Interfaces, 2018, 10(8): 7079-7086. |
20 | Liu D L, Wang C H, Yu Y F, et al. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides [J]. Chem, 2019, 5(2): 376-389. |
21 | Hu Q, Huang X W, Wang Z Y, et al. Slower removing ligands of metal organic frameworks enables higher electrocatalytic performance of derived nanomaterials [J]. Nano Lett., 2014, 14(6): 3309-3313. |
22 | Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction [J]. Angew. Chem. Int. Ed., 2016, 55: 5277-5281. |
23 | 杨永馨, 徐征, 赵谡玲,等. 形貌可控的NaMgF3: Gd3+纳米晶体的合成及其光致发光特性研究[J]. 光谱学与光谱分析, 2020, 40(1): 10-14. |
Yang Y X, Xu Z, Zhao S L, et al. Shape-controlled synthesis of NaMgF3: Gd3+ nanocrystals and its upconversion photoluminescence properties [J]. Spectrosc. Spect. Anal., 2020, 40(1): 10-14. | |
24 | Han X P, He G W, He Y, et al. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis [J]. Adv. Energy Mater., 2018, 8(10): 1702222. |
25 | Zhang J J, Wang H H, Zhao T J, et al. Oxygen vacancy engineering of Co3O4 nanocrystals through coupling with metal support for water oxidation [J]. ChemSusChem, 2017, 10: 2875-2879. |
26 | Gao R, Li Z Y, Zhang X L, et al. Carbon-dotted defective CoO with oxygen vacancies: a synergetic design of bifunctional cathode catalyst for Li-O2 batteries [J]. ACS Catal., 2016, 6(1): 400-406. |
27 | Liang Y, Yang Y, Xu K, et al. Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction [J]. J. Catal., 2020, 381: 63-69. |
28 | Ji D, Peng L S, Shen J J, et al. Inert V2O3 oxide promotes the electrocatalytic activity of Ni metal for alkaline hydrogen evolution [J]. Chem. Commun., 2019, 55(22): 3290-3293. |
29 | Wu C, Liu D, Li H, et al. Molybdenum carbide-decorated metallic cobalt@nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution [J]. Small, 2018, 14(16): 1704227. |
30 | 王文峰, 秦山, 张荣荣, 等. 纳米八面体形FeP@PC的制备及催化析氢性能[J]. 高等学校化学学报, 2019, 40(9): 1979-1987. |
Wang W F, Qin S, Zhang R R, et al. Preparation of UIO-66-based porous nano-octahedral FeP@PC for efficient and durable hydrogen evolution [J]. Chem. J. Chinese U., 2019, 40(9): 1979-1987. | |
31 | Wang H Y, Hung S F, Chen H Y, et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4 [J]. J. Am. Chem. Soc., 2016, 138(1): 36-39. |
32 | Bergmann A, Jones T E, Martinez-Moreno E, et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction [J]. Nat. Catal., 2018, 1(9): 711-719. |
33 | Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution [J]. Adv. Energy Mater., 2016, 6(6): 1502313. |
34 | Tung C W, Hsu Y Y, Shen Y P, et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution [J]. Nat. Commun., 2015, 6: 8106. |
35 | Chen Z, Cai L, Yang X F, et al. Reversible structural evolution of NiCoOxHy during the oxygen evolution reaction and identification of the catalytically active phase [J]. ACS Catal., 2017, 8(2): 1238-1247. |
36 | McCrory C C L, Jung S, Ferrer I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices [J]. J. Am. Chem. Soc., 2015, 137(13): 4347-4357. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[8] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[12] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[13] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[14] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[15] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||