化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1575-1584.doi: 10.11949/0438-1157.20211147

• 催化、动力学与反应器 • 上一篇    下一篇

一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂

赵娟(),吴梦成,雷惊雷,李凌杰()   

  1. 重庆大学化学化工学院,重庆 400044
  • 收稿日期:2021-08-12 修回日期:2022-03-21 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 李凌杰 E-mail:15182935663@163.com;ljli@cqu.edu.cn
  • 作者简介:赵娟(1997—),女,硕士研究生,15182935663@163.com
  • 基金资助:
    国家自然科学基金项目(22072008);重庆大学大型仪器基金项目

One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis

Juan ZHAO(),Mengcheng WU,Jinglei LEI,Lingjie LI()   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2021-08-12 Revised:2022-03-21 Published:2022-04-05 Online:2022-04-25
  • Contact: Lingjie LI E-mail:15182935663@163.com;ljli@cqu.edu.cn

摘要:

采用一步水热法,由泡沫钼镍合金同时提供钼源和镍源在泡沫钼镍合金表面原位制备了Ni3S2@Mo2S3,并将其直接作为自支撑电极用于催化碱性介质中的电解水析氧反应(OER)。利用多种表征测试技术研究了样品的形貌、组成、OER电催化性能,结果显示:Ni3S2@Mo2S3呈纳米板形貌,由六方Ni3S2和单斜Mo2S3按5∶1的比例复合而成;在1 mol·L-1 KOH 溶液中,Ni3S2@Mo2S3催化剂仅需要170 mV过电位就可达到10 mA·cm-2电流密度(欧姆补偿后),且在50 h的稳定性测试期间性能基本无衰减,优于贵金属催化剂IrO2以及文献报道的Ni-Mo基复合催化剂。Ni3S2@Mo2S3具有优异电催化性能的原因可归于不同过渡金属化合物的协同作用、原位生长自支撑、电化学活性面积大以及液下疏气性等因素。

关键词: 水热, 电化学, 催化, 析氧反应

Abstract:

The Ni3S2@Mo2S3 self-supported catalyst for oxygen evolution reaction in water electrolysis was in situ synthesized on MoNi foam (MNF) by one-step hydrothermal method with MNF as the sources of Ni and Mo. The morphology, composition and OER electrocatalytic performance of the as-prepared catalyst were characterized by the corresponding characterization techniques and electrochemical methods. The catalyst was consisted of irregular nano-slabs with the composition of hexagonal Ni3S2 and monoclinic Mo2S3 in a ratio of 5∶1. The as-prepared Ni3S2@Mo2S3 only needed an overpotential of 170 mV (after IR compensation) to drive a current density of 10 mA·cm-2 in 1 mol·L-1 KOH with negligible degradation during the 50 h stability test, which was superior to the commercial catalyst IrO2 and other Ni-Mo based catalysts reported. The excellent electrocatalytic performance of Ni3S2@Mo2S3 can be attributed to the synergistic effect of different transition metal compounds, self-supporting in situ growth, large electrochemically active area, and aerophobicity under liquid.

Key words: hydrothermal, electrochemistry, catalysis, oxygen evolution reaction

中图分类号: 

  • TQ 151.1

图1

水热样品在不同放大倍数下的FE-SEM图像"

图2

水热产物的XRD与XPS表征结果"

图3

电催化性能测试结果"

表1

Ni-Mo基复合催化剂催化性能比较"

催化剂η10/mVStability/h文献
Ni3S2@Mo2S3/NMF17050this work
MoS2/NiS/NF21610000 cycles[48]
MoS2/NiS227824[49]
MoS2/Ni3S221810[50]
Ni3S2@MoS2/FeOOH23450[51]
MoS2-Ni3S2 HNRs/NF24948[52]
light Fe-doped (NiS2/MoS2)/CNT234[53]
NiMoS26015[54]
MoS2/NiS yolk-shell35024[55]

图4

CV曲线和Cdl拟合结果"

图5

气体接触角测试结果"

图6

理论模型(蓝色代表Ni原子;绿色代表Mo原子;黄色代表S原子)"

30 Ma X, Zhang X Y, Yang M, et al. High-pressure microwave-assisted synthesis of WS x /Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction[J]. Rare Metals, 2021, 40(5): 1048-1055.
31 McCrory C C L, Jung S, Peters J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987.
32 Huang W H, Li X M, Yang X F, et al. Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS2 with hetero-interfaces[J]. Chemical Communications (Cambridge, England), 2021, 57(39): 4847-4850.
33 Inamdar A I, Chavan H S, Hou B, et al. A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting[J]. Small, 2020, 16(2): 1905884.
34 Zeng L Y, Sun K A, Yang Z C, et al. Tunable 3D hierarchical Ni3S2 superstructures as efficient and stable bifunctional electrocatalysts for both H2 and O2 generation[J]. Journal of Materials Chemistry A, 2018, 6(10): 4485-4493.
35 Dueso C, Izquierdo M T, García-Labiano F, et al. Effect of H2S on the behaviour of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC)[J]. Applied Catalysis B: Environmental, 2012, 126: 186-199.
36 Zhou Y, Yang X G, Xi S Q, et al. Vermicular Ni3S2-Ni(OH)2 heterostructure supported on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11138-11147.
37 Li T T, Zuo Y P, Lei X M, et al. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(21): 8029-8040.
38 Li H B, Yu M H, Wang F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications, 2013, 4: 1894.
39 Pan Q, Liu Y H, Zhao L J. Co9S8/Mo2S3 nanorods on CoS2 laminar arrays as advanced electrode with superior rate properties and long cycle life for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 351: 603-612.
40 Cao L J, Yang S B, Gao W, et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films[J]. Small, 2013, 9(17): 2905-2910.
41 Zhang W X, Liu M S, Liang H, et al. Flower-like nanosheets directly grown on Co foil as efficient bifunctional catalysts for overall water splitting[J]. Journal of Colloid and Interface Science, 2021, 587: 650-660.
42 Guan B, Li Y, Yin B Y, et al. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor[J]. Chemical Engineering Journal, 2017, 308: 1165-1173.
43 王焕英, 宋秀芹. 以六次甲基四胺为沉淀剂制备纳米ZrO2的研究[J]. 人工晶体学报, 2005, 34(4): 615-619.
1 原荷峰, 马自在, 王淑敏, 等. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831-5841.
Yuan H F, Ma Z Z, Wang S M, et al. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020, 71(12): 5831-5841.
43 Wang H Y, Song X Q. Study on preparing nano-sized ZrO2 using hexamethy lenete tramine as precipitator[J]. Journal of Synthetic Crystals, 2005, 34(4): 615-619.
44 沈苗. 泡沫镍负载Ni3S2/聚吡咯复合材料的制备及其超容性能研究[D]. 长沙: 湖南师范大学, 2020.
Shen M. Preparation of Ni3S2/polypyrrole composite material supported on nickel foam for supercapacitor[D]. Changsha: Hunan Normal University, 2020.
45 朱立伟. 医用电容器电极材料的水热一步合成及其电化学性能[D]. 衡阳: 南华大学, 2016.
Zhu L W. Hydrothermal one-step synthesis of nickel/cobalt double hydroxide composite containing reduced graphene oxide and layered nickel/cobalt double hydroxide[D]. Hengyang: University of South China, 2016.
46 Wang Q X, Dastafkan K, Zhao C. Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions[J]. Current Opinion in Electrochemistry, 2018, 10: 16-23.
47 Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts[J]. ACS Energy Letters, 2017, 2(8): 1937-1938.
48 Xu X B, Zhong W, Zhang L, et al. MoS2/NiS heterostructure grown on nickel foam as highly efficient bifunctional electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17329-17338.
49 Lin J H, Wang P C, Wang H H, et al. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting[J]. Advanced Science, 2019, 6(14): 1900246.
50 Zhang J, Wang T, Pohl D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angewandte Chemie-International Edition, 2016, 55(23): 6702-6707.
51 Zheng M Y, Guo K L, Jiang W J, et al. When MoS2 meets FeOOH: a “one-stone-two-birds” heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting[J]. Applied Catalysis B: Environmental, 2019, 244: 1004-1012.
52 Yang Y Q, Zhang K, Ling H L, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catalysis, 2017, 7(4): 2357-2366.
53 Li C Y, Liu M D, Ding H Y, et al. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(34): 17527-17536.
54 Wang C Z, Shao X D, Pan J, et al. Redox bifunctional activities with optical gain of Ni3S2 nanosheets edged with MoS2 for overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 268: 118435.
55 Qin Q, Chen L L, Wei T, et al. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor[J]. Small, 2019, 15(29): 1803639.
56 Li L J, Sun C Y, Shang B, et al. Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting[J]. Journal of Materials Chemistry A, 2019, 7(30): 18003-18011.
57 Li L J, Cao L, He Q D, et al. A novel strategy to simultaneously tailor morphology and electronic structure of CuCo hybrid oxides for enhanced electrocatalytic performance in overall water splitting[J]. Sustainable Energy & Fuels, 2020, 4(6): 2775-2781.
58 Darband G B, Aliofkhazraei M, Shanmugam S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109300.
2 马佳欢, 杨微微, 白羽, 等. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030.
Ma J H, Yang W W, Bai Y, et al. Research progress of two-dimensional metal organic frameworks and their derivatives for electrocatalytic water splitting[J]. CIESC Journal, 2020, 71(9): 4006-4030.
3 Chen Z J, Duan X G, Wei W, et al. Iridium-based nanomaterials for electrochemical water splitting[J]. Nano Energy, 2020, 78: 105270.
4 Zhang L, Ren X, Guo X D, et al. Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P-CeO2 [J]. Inorganic Chemistry, 2018, 57(2): 548-552.
5 Zhou Y N, Wang F L, Dou S Y, et al. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction[J]. Chemical Engineering Journal, 2022, 427: 131643.
6 Zhou Y N, Yu W L, Cao Y N, et al. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution[J]. Applied Catalysis B: Environmental, 2021, 292: 120150.
7 Qin J F, Yang M, Chen T S, et al. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2745-2753.
8 Yang Q, Li T, Lu Z Y, et al. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction[J]. Nanoscale, 2014, 6(20): 11789-11794.
9 Zhu G L, Ge R X, Qu F L, et al. In situ surface derivation of an Fe-Co-Bi layer on an Fe-doped Co3O4 nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions[J]. Journal of Materials Chemistry A, 2017, 5(14): 6388-6392.
10 Bai Y, Zhang L C, Li Q L, et al. Self-supported CdP2-CDs-CoP for high-performance OER catalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1297-1303.
11 Chai Y M, Zhang X Y, Lin J H, et al. Three-dimensional VO x /NiS/NF nanosheets as efficient electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10156-10162.
12 陈保卫, 高文君, 徐冬, 等. 硫化铁/硫化钴复合材料的合成及催化应用[J]. 化工新型材料, 2020, 48(S1): 85-88, 93.
59 Matsushima H, Iida T, Fukunaka Y. Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field[J]. Journal of Solid State Electrochemistry, 2012, 16(2): 617-623.
60 Yang Y, Yao H Q, Yu Z H, et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range[J]. Journal of the American Chemical Society, 2019, 141(26): 10417-10430.
12 Chen B W, Gao W J, Xu D, et al. Synthesis and catalytic application of FeS2/CoS2 composite[J]. New Chemical Materials, 2020, 48(S1): 85-88, 93.
13 Niu Y L, Li W, Wu X J, et al. Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation[J]. Journal of Materials Chemistry A, 2019, 7(17): 10534-10542.
14 Francàs L, Corby S, Selim S, et al. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts[J]. Nature Communications, 2019, 10: 5208.
15 Li H Y, Wang X L, Wang T, et al. A facile, green and time-saving method to prepare partially crystalline NiFe layered double hydroxide nanosheets on nickel foam for superior OER catalysis[J]. Journal of Alloys and Compounds, 2020, 844: 156224.
16 Zhang K, Wang W H, Kuai L, et al. A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis[J]. Electrochimica Acta, 2017, 225: 303-309.
61 Cheng Y, Yuan P F, Xu X H, et al. S-edge-rich Mo x S y arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts[J]. Nanoscale, 2019, 11(42): 20284-20294.
17 Desalegn B Z, Jadhav H S, Seo J G. Interface modulation of a layer-by-layer electrodeposited Fe x Co(1– x)P/NiP@CC heterostructure for high-performance oxygen evolution reaction[J]. Sustainable Energy & Fuels, 2020, 4(4): 1863-1874.
18 Zhou M, Sun Q Q, Shen Y Q, et al. Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction[J]. Electrochimica Acta, 2019, 306: 651-659.
19 Wang D, Wang Y J, Fu Z Y, et al. Cobalt-nickel phosphate composites for the all-phosphate asymmetric supercapacitor and oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34507-34517.
20 Li L J, Huang W J, Lei J L, et al. Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution[J]. Applied Surface Science, 2019, 479: 540-547.
21 Chang J L, Chen L M, Zang S Q, et al. The effect of Fe(Ⅲ) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)2 electrode[J]. Journal of Colloid and Interface Science, 2020, 569: 50-56.
22 Yang Y Y, Meng H X, Yan S H, et al. The in situ construction of NiFe sulfide with nanoarray structure on nickel foam as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Alloys and Compounds, 2021, 874: 159874.
23 Zhang Y, Fu J L, Zhao H, et al. Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting[J]. Applied Catalysis B: Environmental, 2019, 257: 117899.
24 Shit S, Chhetri S, Fang W, et al. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27712-27722.
25 Zhang Z, Li X P, Zhong C, et al. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(18): 7245-7250.
26 Wang X X, Li L, Xu L G, et al. An efficient and stable MnCo@NiS catalyst for oxygen evolution reaction constructed by a step-by-step electrodeposition way[J]. Journal of Power Sources, 2021, 489: 229525.
27 Che Q J, Li Q, Chen X H, et al. Assembling amorphous (Fe-Ni)Co x -OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion[J]. Applied Catalysis B: Environmental, 2020, 263: 118338.
28 Xu S R, Du Y S, Liu X, et al. Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P-Ni5P4/NF catalyst for efficient oxygen evolution[J]. Journal of Alloys and Compounds, 2020, 826: 154210.
29 Zhou Y, Xi S Q, Yang X G, et al. In situ hydrothermal growth of metallic Co9S8-Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Journal of Solid State Chemistry, 2019, 270: 398-406.
[1] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[2] 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818.
[3] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[4] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[5] 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211.
[6] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[7] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[8] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[9] 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
[10] 乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044.
[11] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[12] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[13] 欧阳萍, 张睿, 周剑, 刘海燕, 刘植昌, 徐春明, 孟祥海. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221.
[14] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[15] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!