化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1575-1584.DOI: 10.11949/0438-1157.20211147
收稿日期:
2021-08-12
修回日期:
2022-03-21
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
李凌杰
作者简介:
赵娟(1997—),女,硕士研究生,基金资助:
Juan ZHAO(),Mengcheng WU,Jinglei LEI,Lingjie LI(
)
Received:
2021-08-12
Revised:
2022-03-21
Online:
2022-04-05
Published:
2022-04-25
Contact:
Lingjie LI
摘要:
采用一步水热法,由泡沫钼镍合金同时提供钼源和镍源在泡沫钼镍合金表面原位制备了Ni3S2@Mo2S3,并将其直接作为自支撑电极用于催化碱性介质中的电解水析氧反应(OER)。利用多种表征测试技术研究了样品的形貌、组成、OER电催化性能,结果显示:Ni3S2@Mo2S3呈纳米板形貌,由六方Ni3S2和单斜Mo2S3按5∶1的比例复合而成;在1 mol·L-1 KOH 溶液中,Ni3S2@Mo2S3催化剂仅需要170 mV过电位就可达到10 mA·cm-2电流密度(欧姆补偿后),且在50 h的稳定性测试期间性能基本无衰减,优于贵金属催化剂IrO2以及文献报道的Ni-Mo基复合催化剂。Ni3S2@Mo2S3具有优异电催化性能的原因可归于不同过渡金属化合物的协同作用、原位生长自支撑、电化学活性面积大以及液下疏气性等因素。
中图分类号:
赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584.
Juan ZHAO, Mengcheng WU, Jinglei LEI, Lingjie LI. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis[J]. CIESC Journal, 2022, 73(4): 1575-1584.
催化剂 | η10/mV | Stability/h | 文献 |
---|---|---|---|
Ni3S2@Mo2S3/NMF | 170 | 50 | this work |
MoS2/NiS/NF | 216 | 10000 cycles | [ |
MoS2/NiS2 | 278 | 24 | [ |
MoS2/Ni3S2 | 218 | 10 | [ |
Ni3S2@MoS2/FeOOH | 234 | 50 | [ |
MoS2-Ni3S2 HNRs/NF | 249 | 48 | [ |
light Fe-doped (NiS2/MoS2)/CNT | 234 | — | [ |
NiMoS | 260 | 15 | [ |
MoS2/NiS yolk-shell | 350 | 24 | [ |
表1 Ni-Mo基复合催化剂催化性能比较
Table 1 Comparison of the OER electrocatalytic performance of Ni-Mo based catalysts
催化剂 | η10/mV | Stability/h | 文献 |
---|---|---|---|
Ni3S2@Mo2S3/NMF | 170 | 50 | this work |
MoS2/NiS/NF | 216 | 10000 cycles | [ |
MoS2/NiS2 | 278 | 24 | [ |
MoS2/Ni3S2 | 218 | 10 | [ |
Ni3S2@MoS2/FeOOH | 234 | 50 | [ |
MoS2-Ni3S2 HNRs/NF | 249 | 48 | [ |
light Fe-doped (NiS2/MoS2)/CNT | 234 | — | [ |
NiMoS | 260 | 15 | [ |
MoS2/NiS yolk-shell | 350 | 24 | [ |
30 | Ma X, Zhang X Y, Yang M, et al. High-pressure microwave-assisted synthesis of WS x /Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction[J]. Rare Metals, 2021, 40(5): 1048-1055. |
31 | McCrory C C L, Jung S, Peters J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987. |
32 | Huang W H, Li X M, Yang X F, et al. Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS2 with hetero-interfaces[J]. Chemical Communications (Cambridge, England), 2021, 57(39): 4847-4850. |
33 | Inamdar A I, Chavan H S, Hou B, et al. A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting[J]. Small, 2020, 16(2): 1905884. |
34 | Zeng L Y, Sun K A, Yang Z C, et al. Tunable 3D hierarchical Ni3S2 superstructures as efficient and stable bifunctional electrocatalysts for both H2 and O2 generation[J]. Journal of Materials Chemistry A, 2018, 6(10): 4485-4493. |
35 | Dueso C, Izquierdo M T, García-Labiano F, et al. Effect of H2S on the behaviour of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC)[J]. Applied Catalysis B: Environmental, 2012, 126: 186-199. |
36 | Zhou Y, Yang X G, Xi S Q, et al. Vermicular Ni3S2-Ni(OH)2 heterostructure supported on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11138-11147. |
37 | Li T T, Zuo Y P, Lei X M, et al. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(21): 8029-8040. |
38 | Li H B, Yu M H, Wang F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications, 2013, 4: 1894. |
39 | Pan Q, Liu Y H, Zhao L J. Co9S8/Mo2S3 nanorods on CoS2 laminar arrays as advanced electrode with superior rate properties and long cycle life for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 351: 603-612. |
40 | Cao L J, Yang S B, Gao W, et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films[J]. Small, 2013, 9(17): 2905-2910. |
41 | Zhang W X, Liu M S, Liang H, et al. Flower-like nanosheets directly grown on Co foil as efficient bifunctional catalysts for overall water splitting[J]. Journal of Colloid and Interface Science, 2021, 587: 650-660. |
42 | Guan B, Li Y, Yin B Y, et al. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor[J]. Chemical Engineering Journal, 2017, 308: 1165-1173. |
43 | 王焕英, 宋秀芹. 以六次甲基四胺为沉淀剂制备纳米ZrO2的研究[J]. 人工晶体学报, 2005, 34(4): 615-619. |
1 | 原荷峰, 马自在, 王淑敏, 等. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831-5841. |
Yuan H F, Ma Z Z, Wang S M, et al. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting[J]. CIESC Journal, 2020, 71(12): 5831-5841. | |
43 | Wang H Y, Song X Q. Study on preparing nano-sized ZrO2 using hexamethy lenete tramine as precipitator[J]. Journal of Synthetic Crystals, 2005, 34(4): 615-619. |
44 | 沈苗. 泡沫镍负载Ni3S2/聚吡咯复合材料的制备及其超容性能研究[D]. 长沙: 湖南师范大学, 2020. |
Shen M. Preparation of Ni3S2/polypyrrole composite material supported on nickel foam for supercapacitor[D]. Changsha: Hunan Normal University, 2020. | |
45 | 朱立伟. 医用电容器电极材料的水热一步合成及其电化学性能[D]. 衡阳: 南华大学, 2016. |
Zhu L W. Hydrothermal one-step synthesis of nickel/cobalt double hydroxide composite containing reduced graphene oxide and layered nickel/cobalt double hydroxide[D]. Hengyang: University of South China, 2016. | |
46 | Wang Q X, Dastafkan K, Zhao C. Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions[J]. Current Opinion in Electrochemistry, 2018, 10: 16-23. |
47 | Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts[J]. ACS Energy Letters, 2017, 2(8): 1937-1938. |
48 | Xu X B, Zhong W, Zhang L, et al. MoS2/NiS heterostructure grown on nickel foam as highly efficient bifunctional electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17329-17338. |
49 | Lin J H, Wang P C, Wang H H, et al. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting[J]. Advanced Science, 2019, 6(14): 1900246. |
50 | Zhang J, Wang T, Pohl D, et al. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angewandte Chemie-International Edition, 2016, 55(23): 6702-6707. |
51 | Zheng M Y, Guo K L, Jiang W J, et al. When MoS2 meets FeOOH: a “one-stone-two-birds” heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting[J]. Applied Catalysis B: Environmental, 2019, 244: 1004-1012. |
52 | Yang Y Q, Zhang K, Ling H L, et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catalysis, 2017, 7(4): 2357-2366. |
53 | Li C Y, Liu M D, Ding H Y, et al. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2020, 8(34): 17527-17536. |
54 | Wang C Z, Shao X D, Pan J, et al. Redox bifunctional activities with optical gain of Ni3S2 nanosheets edged with MoS2 for overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 268: 118435. |
55 | Qin Q, Chen L L, Wei T, et al. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor[J]. Small, 2019, 15(29): 1803639. |
56 | Li L J, Sun C Y, Shang B, et al. Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting[J]. Journal of Materials Chemistry A, 2019, 7(30): 18003-18011. |
57 | Li L J, Cao L, He Q D, et al. A novel strategy to simultaneously tailor morphology and electronic structure of CuCo hybrid oxides for enhanced electrocatalytic performance in overall water splitting[J]. Sustainable Energy & Fuels, 2020, 4(6): 2775-2781. |
58 | Darband G B, Aliofkhazraei M, Shanmugam S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109300. |
2 | 马佳欢, 杨微微, 白羽, 等. 二维金属有机框架及其衍生物用于电催化分解水的研究进展[J]. 化工学报, 2020, 71(9): 4006-4030. |
Ma J H, Yang W W, Bai Y, et al. Research progress of two-dimensional metal organic frameworks and their derivatives for electrocatalytic water splitting[J]. CIESC Journal, 2020, 71(9): 4006-4030. | |
3 | Chen Z J, Duan X G, Wei W, et al. Iridium-based nanomaterials for electrochemical water splitting[J]. Nano Energy, 2020, 78: 105270. |
4 | Zhang L, Ren X, Guo X D, et al. Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P-CeO2 [J]. Inorganic Chemistry, 2018, 57(2): 548-552. |
5 | Zhou Y N, Wang F L, Dou S Y, et al. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction[J]. Chemical Engineering Journal, 2022, 427: 131643. |
6 | Zhou Y N, Yu W L, Cao Y N, et al. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution[J]. Applied Catalysis B: Environmental, 2021, 292: 120150. |
7 | Qin J F, Yang M, Chen T S, et al. Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2745-2753. |
8 | Yang Q, Li T, Lu Z Y, et al. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction[J]. Nanoscale, 2014, 6(20): 11789-11794. |
9 | Zhu G L, Ge R X, Qu F L, et al. In situ surface derivation of an Fe-Co-Bi layer on an Fe-doped Co3O4 nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions[J]. Journal of Materials Chemistry A, 2017, 5(14): 6388-6392. |
10 | Bai Y, Zhang L C, Li Q L, et al. Self-supported CdP2-CDs-CoP for high-performance OER catalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1297-1303. |
11 | Chai Y M, Zhang X Y, Lin J H, et al. Three-dimensional VO x /NiS/NF nanosheets as efficient electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10156-10162. |
12 | 陈保卫, 高文君, 徐冬, 等. 硫化铁/硫化钴复合材料的合成及催化应用[J]. 化工新型材料, 2020, 48(S1): 85-88, 93. |
59 | Matsushima H, Iida T, Fukunaka Y. Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field[J]. Journal of Solid State Electrochemistry, 2012, 16(2): 617-623. |
60 | Yang Y, Yao H Q, Yu Z H, et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range[J]. Journal of the American Chemical Society, 2019, 141(26): 10417-10430. |
12 | Chen B W, Gao W J, Xu D, et al. Synthesis and catalytic application of FeS2/CoS2 composite[J]. New Chemical Materials, 2020, 48(S1): 85-88, 93. |
13 | Niu Y L, Li W, Wu X J, et al. Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation[J]. Journal of Materials Chemistry A, 2019, 7(17): 10534-10542. |
14 | Francàs L, Corby S, Selim S, et al. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts[J]. Nature Communications, 2019, 10: 5208. |
15 | Li H Y, Wang X L, Wang T, et al. A facile, green and time-saving method to prepare partially crystalline NiFe layered double hydroxide nanosheets on nickel foam for superior OER catalysis[J]. Journal of Alloys and Compounds, 2020, 844: 156224. |
16 | Zhang K, Wang W H, Kuai L, et al. A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis[J]. Electrochimica Acta, 2017, 225: 303-309. |
61 | Cheng Y, Yuan P F, Xu X H, et al. S-edge-rich Mo x S y arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts[J]. Nanoscale, 2019, 11(42): 20284-20294. |
17 | Desalegn B Z, Jadhav H S, Seo J G. Interface modulation of a layer-by-layer electrodeposited Fe x Co(1– x)P/NiP@CC heterostructure for high-performance oxygen evolution reaction[J]. Sustainable Energy & Fuels, 2020, 4(4): 1863-1874. |
18 | Zhou M, Sun Q Q, Shen Y Q, et al. Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction[J]. Electrochimica Acta, 2019, 306: 651-659. |
19 | Wang D, Wang Y J, Fu Z Y, et al. Cobalt-nickel phosphate composites for the all-phosphate asymmetric supercapacitor and oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34507-34517. |
20 | Li L J, Huang W J, Lei J L, et al. Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution[J]. Applied Surface Science, 2019, 479: 540-547. |
21 | Chang J L, Chen L M, Zang S Q, et al. The effect of Fe(Ⅲ) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)2 electrode[J]. Journal of Colloid and Interface Science, 2020, 569: 50-56. |
22 | Yang Y Y, Meng H X, Yan S H, et al. The in situ construction of NiFe sulfide with nanoarray structure on nickel foam as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Alloys and Compounds, 2021, 874: 159874. |
23 | Zhang Y, Fu J L, Zhao H, et al. Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting[J]. Applied Catalysis B: Environmental, 2019, 257: 117899. |
24 | Shit S, Chhetri S, Fang W, et al. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27712-27722. |
25 | Zhang Z, Li X P, Zhong C, et al. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(18): 7245-7250. |
26 | Wang X X, Li L, Xu L G, et al. An efficient and stable MnCo@NiS catalyst for oxygen evolution reaction constructed by a step-by-step electrodeposition way[J]. Journal of Power Sources, 2021, 489: 229525. |
27 | Che Q J, Li Q, Chen X H, et al. Assembling amorphous (Fe-Ni)Co x -OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion[J]. Applied Catalysis B: Environmental, 2020, 263: 118338. |
28 | Xu S R, Du Y S, Liu X, et al. Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P-Ni5P4/NF catalyst for efficient oxygen evolution[J]. Journal of Alloys and Compounds, 2020, 826: 154210. |
29 | Zhou Y, Xi S Q, Yang X G, et al. In situ hydrothermal growth of metallic Co9S8-Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Journal of Solid State Chemistry, 2019, 270: 398-406. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[15] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 989
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 785
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||